Cargando…

Effects of low occlusal loading on the neuromuscular behavioral development of cortically-elicited jaw movements in growing rats

The effect of altered occlusal force on masticatory-related neuromuscular control, which projects from the anterior part of the cortical masticatory area (A-CMA), during growth remains unclear. This study sought to evaluate the effect of occlusal hypofunction on neuromuscular development of jaw musc...

Descripción completa

Detalles Bibliográficos
Autores principales: Aung, Phyo Thura, Kato, Chiho, Fujita, Akiyo, Abe, Yasunori, Ogawa, Takuya, Ishidori, Hideyuki, Okihara, Hidemasa, Kokai, Satoshi, Ono, Takashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010060/
https://www.ncbi.nlm.nih.gov/pubmed/33785823
http://dx.doi.org/10.1038/s41598-021-86581-9
Descripción
Sumario:The effect of altered occlusal force on masticatory-related neuromuscular control, which projects from the anterior part of the cortical masticatory area (A-CMA), during growth remains unclear. This study sought to evaluate the effect of occlusal hypofunction on neuromuscular development of jaw muscle activities and cortically-induced rhythmic jaw movements (RJMs) in growing rats. Sixty-four 2-week-old male albino Wistar rats were divided into the control (fed normal diet) and experimental (fed soft diet) groups soon after weaning. Electromyographic activity was recorded at 5, 7, 9, and 11 weeks from the right masseter and anterior digastric along with RJMs. We found a significantly longer onset latency and smaller peak-to-peak amplitude in the experimental group than that in the control group. The RJMs showed an increase in gape size and lateral excursion until up to 9 weeks in both groups. However, both the average gape size and lateral excursion were significantly smaller in the experimental group than that in the control group after 9 weeks. The jaw movement pattern also showed a significant decrease at the maximum opening period in the experimental group. Our findings indicate that inadequate occlusal function during growth alters neuromuscular control of masticatory behaviors and impairs the pattern of RJMs.