Cargando…
Effect of 17β-estradiol on a human vaginal Lactobacillus crispatus strain
Lactobacilli and estrogens play essential roles in vaginal homeostasis. We investigated the potential direct effect of 17β-estradiol on a vaginal strain of Lactobacillus crispatus, the major bacterial species of the vaginal microbiota. 17β-estradiol (10(–6) to 10(–10) M) had no effect on L. crispatu...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010061/ https://www.ncbi.nlm.nih.gov/pubmed/33785829 http://dx.doi.org/10.1038/s41598-021-86628-x |
Sumario: | Lactobacilli and estrogens play essential roles in vaginal homeostasis. We investigated the potential direct effect of 17β-estradiol on a vaginal strain of Lactobacillus crispatus, the major bacterial species of the vaginal microbiota. 17β-estradiol (10(–6) to 10(–10) M) had no effect on L. crispatus growth, but markedly affected the membrane dynamics of this bacterium. This effect appeared consistent with a signal transduction process. The surface polarity and aggregation potential of the bacterium were unaffected by exposure to 17β-estradiol, but its mean size was significantly reduced. 17β-estradiol also promoted biosurfactant production by L. crispatus and adhesion to vaginal VK2/E6E7 cells, but had little effect on bacterial biofilm formation activity. Bioinformatic analysis of L. crispatus identified a membrane lipid raft–associated stomatin/prohibitin/flotillin/HflK domain containing protein as a potential 17β-estradiol binding site. Overall, our results reveal direct effects of 17β-estradiol on L. crispatus. These effects are of potential importance in the physiology of the vaginal environment, through the promotion of lactobacillus adhesion to the mucosa and protection against pathogens. |
---|