Cargando…
Near-surface real-time seismic imaging using parsimonious interferometry
Results are presented for real-time seismic imaging of subsurface fluid flow by parsimonious refraction and surface-wave interferometry. Each subsurface velocity image inverted from time-lapse seismic data only requires several minutes of recording time, which is less than the time-scale of the flui...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010075/ https://www.ncbi.nlm.nih.gov/pubmed/33785824 http://dx.doi.org/10.1038/s41598-021-86531-5 |
Sumario: | Results are presented for real-time seismic imaging of subsurface fluid flow by parsimonious refraction and surface-wave interferometry. Each subsurface velocity image inverted from time-lapse seismic data only requires several minutes of recording time, which is less than the time-scale of the fluid-induced changes in the rock properties. In this sense this is real-time imaging. The images are P-velocity tomograms inverted from the first-arrival times and the S-velocity tomograms inverted from dispersion curves. Compared to conventional seismic imaging, parsimonious interferometry reduces the recording time and increases the temporal resolution of time-lapse seismic images by more than an order-of-magnitude. In our seismic experiment, we recorded 90 sparse data sets over 4.5 h while injecting 12-tons of water into a sand dune. Results show that the percolation of water is mostly along layered boundaries down to a depth of a few meters, which is consistent with our 3D computational fluid flow simulations and laboratory experiments. The significance of parsimonious interferometry is that it provides more than an order-of-magnitude increase of temporal resolution in time-lapse seismic imaging. We believe that real-time seismic imaging will have important applications for non-destructive characterization in environmental, biomedical, and subsurface imaging. |
---|