Cargando…
BS-Net: Learning COVID-19 pneumonia severity on a large chest X-ray dataset
In this work we design an end-to-end deep learning architecture for predicting, on Chest X-rays images (CXR), a multi-regional score conveying the degree of lung compromise in COVID-19 patients. Such semi-quantitative scoring system, namely Brixia score, is applied in serial monitoring of such patie...
Autores principales: | Signoroni, Alberto, Savardi, Mattia, Benini, Sergio, Adami, Nicola, Leonardi, Riccardo, Gibellini, Paolo, Vaccher, Filippo, Ravanelli, Marco, Borghesi, Andrea, Maroldi, Roberto, Farina, Davide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010334/ https://www.ncbi.nlm.nih.gov/pubmed/33862337 http://dx.doi.org/10.1016/j.media.2021.102046 |
Ejemplares similares
-
Which role for chest x-ray score in predicting the outcome in COVID-19 pneumonia?
por: Maroldi, Roberto, et al.
Publicado: (2020) -
CineScale: A dataset of cinematic shot scale in movies
por: Savardi, Mattia, et al.
Publicado: (2021) -
CineScale2: a dataset of cinematic camera features in movies
por: Savardi, Mattia, et al.
Publicado: (2023) -
Early prediction of in-hospital death of COVID-19 patients: a machine-learning model based on age, blood analyses, and chest x-ray score
por: Garrafa, Emirena, et al.
Publicado: (2021) -
Flying through congested airspaces: imaging of chronic rhinosinusitis
por: Farina, Davide, et al.
Publicado: (2010)