Cargando…
Using simulation to accelerate autonomous experimentation: A case study using mechanics
Autonomous experimentation (AE) accelerates research by combining automation and machine learning to perform experiments intelligently and rapidly in a sequential fashion. While AE systems are most needed to study properties that cannot be predicted analytically or computationally, even imperfect pr...
Autores principales: | Gongora, Aldair E., Snapp, Kelsey L., Whiting, Emily, Riley, Patrick, Reyes, Kristofer G., Morgan, Elise F., Brown, Keith A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010472/ https://www.ncbi.nlm.nih.gov/pubmed/33817570 http://dx.doi.org/10.1016/j.isci.2021.102262 |
Ejemplares similares
-
A Bayesian experimental autonomous researcher for mechanical design
por: Gongora, Aldair E., et al.
Publicado: (2020) -
Accelerated AI development for autonomous materials synthesis in flow
por: Epps, Robert W., et al.
Publicado: (2021) -
Experimental semi-autonomous eigensolver using reinforcement learning
por: Pan, C.-Y., et al.
Publicado: (2021) -
AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning
por: Volk, Amanda A., et al.
Publicado: (2023) -
Electromagnetic Simulation of CERN accelerator Components and Experimental Applications
por: Zannini, Carlo
Publicado: (2013)