Cargando…
Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications
IMPORTANCE: Postoperative complications can significantly impact perioperative care management and planning. OBJECTIVES: To assess machine learning (ML) models for predicting postoperative complications using independent and combined preoperative and intraoperative data and their clinically meaningf...
Autores principales: | Xue, Bing, Li, Dingwen, Lu, Chenyang, King, Christopher R., Wildes, Troy, Avidan, Michael S., Kannampallil, Thomas, Abraham, Joanna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010590/ https://www.ncbi.nlm.nih.gov/pubmed/33783520 http://dx.doi.org/10.1001/jamanetworkopen.2021.2240 |
Ejemplares similares
-
An Intraoperative Telemedicine Program to Improve Perioperative Quality Measures: The ACTFAST-3 Randomized Clinical Trial
por: King, Christopher R., et al.
Publicado: (2023) -
Preoperative Falls Predict Postoperative Falls, Functional Decline, and Surgical Complications
por: Kronzer, Vanessa L., et al.
Publicado: (2016) -
Comparison of Machine Learning Models Including Preoperative, Intraoperative, and Postoperative Data and Mortality After Cardiac Surgery
por: Castela Forte, José, et al.
Publicado: (2022) -
Using machine learning techniques to develop forecasting algorithms for postoperative complications: protocol for a retrospective study
por: Fritz, Bradley A, et al.
Publicado: (2018) -
Association Between Preoperative Obstructive Sleep Apnea and Preoperative Positive Airway Pressure With Postoperative Intensive Care Unit Delirium
por: King, Christopher R., et al.
Publicado: (2020)