Cargando…
An evaluation of machine learning classifiers for next-generation, continuous-ethogram smart trackers
BACKGROUND: Our understanding of movement patterns and behaviours of wildlife has advanced greatly through the use of improved tracking technologies, including application of accelerometry (ACC) across a wide range of taxa. However, most ACC studies either use intermittent sampling that hinders cont...
Autores principales: | Yu, Hui, Deng, Jian, Nathan, Ran, Kröschel, Max, Pekarsky, Sasha, Li, Guozheng, Klaassen, Marcel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8011142/ https://www.ncbi.nlm.nih.gov/pubmed/33785056 http://dx.doi.org/10.1186/s40462-021-00245-x |
Ejemplares similares
-
Optimizing acceleration-based ethograms: the use of variable-time versus fixed-time segmentation
por: Bom, Roeland A, et al.
Publicado: (2014) -
Equine Discomfort Ethogram
por: Torcivia, Catherine, et al.
Publicado: (2021) -
Recommendations for Abnormal Behaviour Ethograms in Monkey Research
por: Polanco, Andrea, et al.
Publicado: (2021) -
DeepEthogram, a machine learning pipeline for supervised behavior classification from raw pixels
por: Bohnslav, James P, et al.
Publicado: (2021) -
An ethogram of acute pain behaviors in cats based on expert consensus
por: Marangoni, Sabrine, et al.
Publicado: (2023)