Cargando…
New generalized-X family: Modeling the reliability engineering applications
As is already known, statistical models are very important for modeling data in applied fields, particularly in engineering, medicine, and many other disciplines. In this paper, we propose a new family to introduce new distributions suitable for modeling reliability engineering data. We called our p...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8011743/ https://www.ncbi.nlm.nih.gov/pubmed/33788850 http://dx.doi.org/10.1371/journal.pone.0248312 |
_version_ | 1783673266090541056 |
---|---|
author | Wang, Wanting Ahmad, Zubair Kharazmi, Omid Ampadu, Clement Boateng Hafez, E. H. Mohie El-Din, Marwa M. |
author_facet | Wang, Wanting Ahmad, Zubair Kharazmi, Omid Ampadu, Clement Boateng Hafez, E. H. Mohie El-Din, Marwa M. |
author_sort | Wang, Wanting |
collection | PubMed |
description | As is already known, statistical models are very important for modeling data in applied fields, particularly in engineering, medicine, and many other disciplines. In this paper, we propose a new family to introduce new distributions suitable for modeling reliability engineering data. We called our proposed family a new generalized-X family of distributions. For the practical illustration, we introduced a new special sub-model, called the new generalized-Weibull distribution, to describe the new family’s significance. For the proposed family, we introduced some mathematical reliability properties. The maximum likelihood estimators for the parameters of the new generalized-X distributions are derived. For assessing the performance of these estimators, a comprehensive Monte Carlo simulation study is carried out. To assess the efficiency of the proposed model, the new generalized-Weibull model is applied to the coating machine failure time data. Finally, Bayesian analysis and performance of Gibbs sampling for the coating machine failure time data are also carried out. Furthermore, the measures such as Gelman-Rubin, Geweke and Raftery-Lewis are used to track algorithm convergence. |
format | Online Article Text |
id | pubmed-8011743 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-80117432021-04-07 New generalized-X family: Modeling the reliability engineering applications Wang, Wanting Ahmad, Zubair Kharazmi, Omid Ampadu, Clement Boateng Hafez, E. H. Mohie El-Din, Marwa M. PLoS One Research Article As is already known, statistical models are very important for modeling data in applied fields, particularly in engineering, medicine, and many other disciplines. In this paper, we propose a new family to introduce new distributions suitable for modeling reliability engineering data. We called our proposed family a new generalized-X family of distributions. For the practical illustration, we introduced a new special sub-model, called the new generalized-Weibull distribution, to describe the new family’s significance. For the proposed family, we introduced some mathematical reliability properties. The maximum likelihood estimators for the parameters of the new generalized-X distributions are derived. For assessing the performance of these estimators, a comprehensive Monte Carlo simulation study is carried out. To assess the efficiency of the proposed model, the new generalized-Weibull model is applied to the coating machine failure time data. Finally, Bayesian analysis and performance of Gibbs sampling for the coating machine failure time data are also carried out. Furthermore, the measures such as Gelman-Rubin, Geweke and Raftery-Lewis are used to track algorithm convergence. Public Library of Science 2021-03-31 /pmc/articles/PMC8011743/ /pubmed/33788850 http://dx.doi.org/10.1371/journal.pone.0248312 Text en © 2021 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Wang, Wanting Ahmad, Zubair Kharazmi, Omid Ampadu, Clement Boateng Hafez, E. H. Mohie El-Din, Marwa M. New generalized-X family: Modeling the reliability engineering applications |
title | New generalized-X family: Modeling the reliability engineering applications |
title_full | New generalized-X family: Modeling the reliability engineering applications |
title_fullStr | New generalized-X family: Modeling the reliability engineering applications |
title_full_unstemmed | New generalized-X family: Modeling the reliability engineering applications |
title_short | New generalized-X family: Modeling the reliability engineering applications |
title_sort | new generalized-x family: modeling the reliability engineering applications |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8011743/ https://www.ncbi.nlm.nih.gov/pubmed/33788850 http://dx.doi.org/10.1371/journal.pone.0248312 |
work_keys_str_mv | AT wangwanting newgeneralizedxfamilymodelingthereliabilityengineeringapplications AT ahmadzubair newgeneralizedxfamilymodelingthereliabilityengineeringapplications AT kharazmiomid newgeneralizedxfamilymodelingthereliabilityengineeringapplications AT ampaduclementboateng newgeneralizedxfamilymodelingthereliabilityengineeringapplications AT hafezeh newgeneralizedxfamilymodelingthereliabilityengineeringapplications AT mohieeldinmarwam newgeneralizedxfamilymodelingthereliabilityengineeringapplications |