Cargando…
An integrated multimodal model of alcohol use disorder generated by data-driven causal discovery analysis
Alcohol use disorder (AUD) has high prevalence and adverse societal impacts, but our understanding of the factors driving AUD is hampered by a lack of studies that describe the complex neurobehavioral mechanisms driving AUD. We analyzed causal pathways to AUD severity using Causal Discovery Analysis...
Autores principales: | Rawls, Eric, Kummerfeld, Erich, Zilverstand, Anna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012376/ https://www.ncbi.nlm.nih.gov/pubmed/33790384 http://dx.doi.org/10.1038/s42003-021-01955-z |
Ejemplares similares
-
The resting-state causal human connectome is characterized by hub connectivity of executive and attentional networks
por: Rawls, Eric, et al.
Publicado: (2022) -
Explainable machine learning analysis reveals sex and gender differences in the phenotypic and neurobiological markers of Cannabis Use Disorder
por: Niklason, Gregory R., et al.
Publicado: (2022) -
Gender Differences in the Psychosocial Determinants Underlying the Onset and Maintenance of Alcohol Use Disorder
por: Maxwell, Andrea M., et al.
Publicado: (2022) -
T221. CAUSAL RELATIONSHIPS BETWEEN EMPATHY, MOTIVATION AND FUNCTIONAL OUTCOMES IN EARLY SCHIZOPHRENIA IDENTIFIED WITH CAUSAL DISCOVERY MODELING
por: Miley, Kathleen, et al.
Publicado: (2020) -
Quantifying heterogeneity in mood–alcohol relationships with idiographic causal models
por: Stevenson, Brittany L., et al.
Publicado: (2022)