Cargando…

Coronary tortuosity relation with carotid intima-media thickness, coronary artery disease risk factors, and diastolic dysfunction: is it a marker of early atherosclerosis?

BACKGROUND: Coronary tortuosity (C-Tor) is a common finding in coronary angiography (CAG). There are conflicting data about its link to atherosclerosis: one study found a negative relationship with coronary artery disease (CAD), although it had been linked to age and hypertension (HTN), which are CA...

Descripción completa

Detalles Bibliográficos
Autores principales: Elamragy, Ahmed, Yakoub, Samuel, AbdelGhany, Mohamed, Ammar, Waleed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012427/
https://www.ncbi.nlm.nih.gov/pubmed/33788058
http://dx.doi.org/10.1186/s43044-021-00157-6
Descripción
Sumario:BACKGROUND: Coronary tortuosity (C-Tor) is a common finding in coronary angiography (CAG). There are conflicting data about its link to atherosclerosis: one study found a negative relationship with coronary artery disease (CAD), although it had been linked to age and hypertension (HTN), which are CAD risk factors. Carotid intima-media thickness (C-IMT) is a measure of early atherosclerosis and a surrogate for CAD, diastolic dysfunction is also associated with CAD risk factors. In this retrospective case-control study, we investigated the relationship between C-Tor, C-IMT, diastolic dysfunction, and the other risk factors in patients undergoing CAG in a tertiary hospital between July 2017 and June 2018, after excluding patients with significant CAD. C-Tor was defined as the presence of ≥ 3 bends (≥ 45°) along the trunk of at least one main coronary artery in CAG. RESULTS: After excluding 663 patients due to exclusion criteria, 30 patients with C-Tor were compared with age and gender-matched controls. HTN was significantly more common in the C-Tor group (86.7% vs. 30%, p < 0.002); other clinical characteristics were similar. The C-IMT was abnormal in the C-Tor group only (p: 0.007). The diastolic dysfunction parameters differed between the two groups: the E/A ratio was < 1 in the C-Tor group and > 1 in the normal group (p: < 0.001); the E velocity and deceleration time were significantly lower in the C-Tor group (p: 0.001 and < 0.001 respectively); the E/E′ ratio, A, and A′ velocities were significantly higher (p: 0.005, < 0.001, < 0.001 respectively); while the S′ velocity was similar in the 2 groups (p: 0.078). The C-Tor group had higher total cholesterol and LDL (p: 0.003 and 0.006 respectively). All C-Tor patients undergoing stress tests had positive results. The only independent C-Tor predictors in a regression analysis were HTN, total cholesterol, A-wave velocity, and deceleration time (DT) (odds ratio: 14.7, 1.03, 1.15, and 0.95, all p: < 0.05). A-wave velocity had the best area under the curve, sensitivity, and specificity for C-Tor prediction (0.88, 73.3%, and 96.7% respectively) followed by DT (0.86, 66.67%, and 96.6% respectively). CONCLUSION: C-Tor is associated with increased C-IMT, HTN, hyperlipidemia, and left ventricular diastolic dysfunction; all contributing to an ongoing atherosclerotic process. A-wave velocity and DT were independent predictors of C-Tor. C-Tor may cause microvascular ischemia that merits further investigation.