Cargando…
TNF-α-Inhibition Improves the Biocompatibility of Porous Polyethylene Implants In Vivo
BACKGROUND: To improve the biocompatibility of porous polyethylene (PPE) implants and expand their application range for reconstructive surgery in poorly vascularized environments, implants were coated with tumor necrosis factor α (TNFα) inhibitor Etanercept. While approved for systemic application,...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012447/ https://www.ncbi.nlm.nih.gov/pubmed/33515166 http://dx.doi.org/10.1007/s13770-020-00325-w |
Sumario: | BACKGROUND: To improve the biocompatibility of porous polyethylene (PPE) implants and expand their application range for reconstructive surgery in poorly vascularized environments, implants were coated with tumor necrosis factor α (TNFα) inhibitor Etanercept. While approved for systemic application, local application of the drug is a novel experimental approach. Microvascular and mechanical integration as well as parameters of inflammation were analyzed in vivo. METHODS: PPE implants were coated with Etanercept and extracellular matrix (ECM) components prior to implantation into dorsal skinfold chambers of C57BL/6 mice. Fluorescence microscopy analyses of angiogenesis and local inflammatory response were thrice performed in vivo over a period of 14 days to assess tissue integration and biocompatibility. Uncoated implants and ECM-coated implants served as controls. RESULTS: TNFα inhibition with Etanercept led to a reduced local inflammatory response: leukocyte-endothelial cell adherence was significantly lowered compared to both control groups (n = 6/group) on days 3 and 14, where the lowest values were reached: 3573.88 leukocytes/mm-2 ± 880.16 (uncoated implants) vs. 3939.09 mm-2 ± 623.34 (Matrigel only) vs. 637.98 mm-2 + 176.85 (Matrigel and Etanercept). Implant-coating with Matrigel alone and Matrigel and Etanercept led to significantly higher vessel densities 7 and 14 days vs. 3 days after implantation and compared to uncoated implants. Mechanical implant integration as measured by dynamic breaking strength did not differ after 14 days. CONCLUSION: Our data show a reduced local inflammatory response to PPE implants after immunomodulatory coating with Etanercept in vivo, suggesting improved biocompatibility. Application of this tissue engineering approach is therefore warranted in models of a compromised host environment. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s13770-020-00325-w) contains supplementary material, which is available to authorized users. |
---|