Cargando…
Long-Term BCI Training of a Tetraplegic User: Adaptive Riemannian Classifiers and User Training
While often presented as promising assistive technologies for motor-impaired users, electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) remain barely used outside laboratories due to low reliability in real-life conditions. There is thus a need to design long-term reliable BCIs that...
Autores principales: | Benaroch, Camille, Sadatnejad, Khadijeh, Roc, Aline, Appriou, Aurélien, Monseigne, Thibaut, Pramij, Smeety, Mladenovic, Jelena, Pillette, Léa, Jeunet, Camille, Lotte, Fabien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012558/ https://www.ncbi.nlm.nih.gov/pubmed/33815081 http://dx.doi.org/10.3389/fnhum.2021.635653 |
Ejemplares similares
-
The Cybathlon BCI race: Successful longitudinal mutual learning with two tetraplegic users
por: Perdikis, Serafeim, et al.
Publicado: (2018) -
Why we should systematically assess, control and report somatosensory impairments in BCI-based motor rehabilitation after stroke studies
por: Pillette, Léa, et al.
Publicado: (2020) -
A large EEG database with users’ profile information for motor imagery brain-computer interface research
por: Dreyer, Pauline, et al.
Publicado: (2023) -
Editorial: Long Term User Training and Preparation to Succeed in a Closed-Loop BCI Competition
por: Müller-Putz, Gernot R., et al.
Publicado: (2022) -
Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns
por: Jeunet, Camille, et al.
Publicado: (2015)