Cargando…
Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks
The power of machine learning (ML) provides the possibility of analyzing experimental measurements with a high sensitivity. However, it still remains challenging to probe the subtle effects directly related to physical observables and to understand physics behind from ordinary experimental data usin...
Autores principales: | Zhao, Entong, Lee, Jeongwon, He, Chengdong, Ren, Zejian, Hajiyev, Elnur, Liu, Junwei, Jo, Gyu-Boong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012572/ https://www.ncbi.nlm.nih.gov/pubmed/33790292 http://dx.doi.org/10.1038/s41467-021-22270-5 |
Ejemplares similares
-
Collective dipole oscillations of a spin-orbit coupled Fermi gas
por: Zhang, Shanchao, et al.
Publicado: (2018) -
Observation of symmetry-protected topological band with ultracold fermions
por: Song, Bo, et al.
Publicado: (2018) -
“Designing synthetic topological matter with atoms and lights”
por: Zhao, Entong, et al.
Publicado: (2022) -
The Thermodynamic Machinery of Life
por: Kurzynski, Michal
Publicado: (2006) -
Fermion masses in SU(11)
por: Jetzer, P, et al.
Publicado: (1984)