Cargando…
Predicting mortality risk for preterm infants using random forest
Mortality is an unfortunately common outcome of extremely and very preterm birth. Existing clinical prediction models capture mortality risk at birth but fail to account for the remainder of the hospital course. Infants born < 32 weeks gestation with complete physiologic and clinical data were in...
Autores principales: | Lee, Jennifer, Cai, Jinjin, Li, Fuhai, Vesoulis, Zachary A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012581/ https://www.ncbi.nlm.nih.gov/pubmed/33790395 http://dx.doi.org/10.1038/s41598-021-86748-4 |
Ejemplares similares
-
Predicting mortality risk for preterm infants using deep learning models with time-series vital sign data
por: Feng, Jiarui, et al.
Publicado: (2021) -
Racial discrepancy in pulse oximeter accuracy in preterm infants
por: Vesoulis, Zachary, et al.
Publicado: (2021) -
A Web-Based Calculator for the Prediction of Severe Neurodevelopmental Impairment in Preterm Infants Using Clinical and Imaging Characteristics
por: Vesoulis, Zachary A., et al.
Publicado: (2018) -
Early Electrographic Seizures, Brain Injury an Neurodevelopmental Risk in the Very Preterm Infant
por: Vesoulis, Zachary A., et al.
Publicado: (2013) -
Seizure burden in preterm infants and smaller brain volume at term equivalent age
por: Vesoulis, Zachary, et al.
Publicado: (2022)