Cargando…

Magnetic domains and domain wall pinning in atomically thin CrBr(3) revealed by nanoscale imaging

The emergence of atomically thin van der Waals magnets provides a new platform for the studies of two-dimensional magnetism and its applications. However, the widely used measurement methods in recent studies cannot provide quantitative information of the magnetization nor achieve nanoscale spatial...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Qi-Chao, Song, Tiancheng, Anderson, Eric, Brunner, Andreas, Förster, Johannes, Shalomayeva, Tetyana, Taniguchi, Takashi, Watanabe, Kenji, Gräfe, Joachim, Stöhr, Rainer, Xu, Xiaodong, Wrachtrup, Jörg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012586/
https://www.ncbi.nlm.nih.gov/pubmed/33790290
http://dx.doi.org/10.1038/s41467-021-22239-4
_version_ 1783673394636521472
author Sun, Qi-Chao
Song, Tiancheng
Anderson, Eric
Brunner, Andreas
Förster, Johannes
Shalomayeva, Tetyana
Taniguchi, Takashi
Watanabe, Kenji
Gräfe, Joachim
Stöhr, Rainer
Xu, Xiaodong
Wrachtrup, Jörg
author_facet Sun, Qi-Chao
Song, Tiancheng
Anderson, Eric
Brunner, Andreas
Förster, Johannes
Shalomayeva, Tetyana
Taniguchi, Takashi
Watanabe, Kenji
Gräfe, Joachim
Stöhr, Rainer
Xu, Xiaodong
Wrachtrup, Jörg
author_sort Sun, Qi-Chao
collection PubMed
description The emergence of atomically thin van der Waals magnets provides a new platform for the studies of two-dimensional magnetism and its applications. However, the widely used measurement methods in recent studies cannot provide quantitative information of the magnetization nor achieve nanoscale spatial resolution. These capabilities are essential to explore the rich properties of magnetic domains and spin textures. Here, we employ cryogenic scanning magnetometry using a single-electron spin of a nitrogen-vacancy center in a diamond probe to unambiguously prove the existence of magnetic domains and study their dynamics in atomically thin CrBr(3). By controlling the magnetic domain evolution as a function of magnetic field, we find that the pinning effect is a dominant coercivity mechanism and determine the magnetization of a CrBr(3) bilayer to be about 26 Bohr magnetons per square nanometer. The high spatial resolution of this technique enables imaging of magnetic domains and allows to locate the sites of defects that pin the domain walls and nucleate the reverse domains. Our work highlights scanning nitrogen-vacancy center magnetometry as a quantitative probe to explore nanoscale features in two-dimensional magnets.
format Online
Article
Text
id pubmed-8012586
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-80125862021-04-16 Magnetic domains and domain wall pinning in atomically thin CrBr(3) revealed by nanoscale imaging Sun, Qi-Chao Song, Tiancheng Anderson, Eric Brunner, Andreas Förster, Johannes Shalomayeva, Tetyana Taniguchi, Takashi Watanabe, Kenji Gräfe, Joachim Stöhr, Rainer Xu, Xiaodong Wrachtrup, Jörg Nat Commun Article The emergence of atomically thin van der Waals magnets provides a new platform for the studies of two-dimensional magnetism and its applications. However, the widely used measurement methods in recent studies cannot provide quantitative information of the magnetization nor achieve nanoscale spatial resolution. These capabilities are essential to explore the rich properties of magnetic domains and spin textures. Here, we employ cryogenic scanning magnetometry using a single-electron spin of a nitrogen-vacancy center in a diamond probe to unambiguously prove the existence of magnetic domains and study their dynamics in atomically thin CrBr(3). By controlling the magnetic domain evolution as a function of magnetic field, we find that the pinning effect is a dominant coercivity mechanism and determine the magnetization of a CrBr(3) bilayer to be about 26 Bohr magnetons per square nanometer. The high spatial resolution of this technique enables imaging of magnetic domains and allows to locate the sites of defects that pin the domain walls and nucleate the reverse domains. Our work highlights scanning nitrogen-vacancy center magnetometry as a quantitative probe to explore nanoscale features in two-dimensional magnets. Nature Publishing Group UK 2021-03-31 /pmc/articles/PMC8012586/ /pubmed/33790290 http://dx.doi.org/10.1038/s41467-021-22239-4 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Sun, Qi-Chao
Song, Tiancheng
Anderson, Eric
Brunner, Andreas
Förster, Johannes
Shalomayeva, Tetyana
Taniguchi, Takashi
Watanabe, Kenji
Gräfe, Joachim
Stöhr, Rainer
Xu, Xiaodong
Wrachtrup, Jörg
Magnetic domains and domain wall pinning in atomically thin CrBr(3) revealed by nanoscale imaging
title Magnetic domains and domain wall pinning in atomically thin CrBr(3) revealed by nanoscale imaging
title_full Magnetic domains and domain wall pinning in atomically thin CrBr(3) revealed by nanoscale imaging
title_fullStr Magnetic domains and domain wall pinning in atomically thin CrBr(3) revealed by nanoscale imaging
title_full_unstemmed Magnetic domains and domain wall pinning in atomically thin CrBr(3) revealed by nanoscale imaging
title_short Magnetic domains and domain wall pinning in atomically thin CrBr(3) revealed by nanoscale imaging
title_sort magnetic domains and domain wall pinning in atomically thin crbr(3) revealed by nanoscale imaging
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012586/
https://www.ncbi.nlm.nih.gov/pubmed/33790290
http://dx.doi.org/10.1038/s41467-021-22239-4
work_keys_str_mv AT sunqichao magneticdomainsanddomainwallpinninginatomicallythincrbr3revealedbynanoscaleimaging
AT songtiancheng magneticdomainsanddomainwallpinninginatomicallythincrbr3revealedbynanoscaleimaging
AT andersoneric magneticdomainsanddomainwallpinninginatomicallythincrbr3revealedbynanoscaleimaging
AT brunnerandreas magneticdomainsanddomainwallpinninginatomicallythincrbr3revealedbynanoscaleimaging
AT forsterjohannes magneticdomainsanddomainwallpinninginatomicallythincrbr3revealedbynanoscaleimaging
AT shalomayevatetyana magneticdomainsanddomainwallpinninginatomicallythincrbr3revealedbynanoscaleimaging
AT taniguchitakashi magneticdomainsanddomainwallpinninginatomicallythincrbr3revealedbynanoscaleimaging
AT watanabekenji magneticdomainsanddomainwallpinninginatomicallythincrbr3revealedbynanoscaleimaging
AT grafejoachim magneticdomainsanddomainwallpinninginatomicallythincrbr3revealedbynanoscaleimaging
AT stohrrainer magneticdomainsanddomainwallpinninginatomicallythincrbr3revealedbynanoscaleimaging
AT xuxiaodong magneticdomainsanddomainwallpinninginatomicallythincrbr3revealedbynanoscaleimaging
AT wrachtrupjorg magneticdomainsanddomainwallpinninginatomicallythincrbr3revealedbynanoscaleimaging