Cargando…
Individual differences in working memory capacity are unrelated to the magnitudes of retrocue benefits
Previous studies have associated visual working memory (VWM) capacity with the use of internal attention. Retrocues, which direct internal attention to a particular object or feature dimension, can improve VWM performance (i.e., retrocue benefit, RCB). However, so far, no study has investigated the...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012624/ https://www.ncbi.nlm.nih.gov/pubmed/33790330 http://dx.doi.org/10.1038/s41598-021-86515-5 |
Sumario: | Previous studies have associated visual working memory (VWM) capacity with the use of internal attention. Retrocues, which direct internal attention to a particular object or feature dimension, can improve VWM performance (i.e., retrocue benefit, RCB). However, so far, no study has investigated the relationship between VWM capacity and the magnitudes of RCBs obtained from object-based and dimension-based retrocues. The present study explored individual differences in the magnitudes of object- and dimension-based RCBs and their relationships with VWM capacity. Participants completed a VWM capacity measurement, an object-based cue task, and a dimension-based cue task. We confirmed that both object- and dimension-based retrocues could improve VWM performance. We also found a significant positive correlation between the magnitudes of object- and dimension-based RCB indexes, suggesting a partly overlapping mechanism between the use of object- and dimension-based retrocues. However, our results provided no evidence for a correlation between VWM capacity and the magnitudes of the object- or dimension-based RCBs. Although inadequate attention control is usually assumed to be associated with VWM capacity, the results suggest that the internal attention mechanism for using retrocues in VWM retention is independent of VWM capacity. |
---|