Cargando…
Harnessing machine learning to guide phylogenetic-tree search algorithms
Inferring a phylogenetic tree is a fundamental challenge in evolutionary studies. Current paradigms for phylogenetic tree reconstruction rely on performing costly likelihood optimizations. With the aim of making tree inference feasible for problems involving more than a handful of sequences, inferen...
Autores principales: | Azouri, Dana, Abadi, Shiran, Mansour, Yishay, Mayrose, Itay, Pupko, Tal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012635/ https://www.ncbi.nlm.nih.gov/pubmed/33790270 http://dx.doi.org/10.1038/s41467-021-22073-8 |
Ejemplares similares
-
A LASSO-based approach to sample sites for phylogenetic tree search
por: Ecker, Noa, et al.
Publicado: (2022) -
Model selection may not be a mandatory step for phylogeny reconstruction
por: Abadi, Shiran, et al.
Publicado: (2019) -
ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules
por: Ashkenazy, Haim, et al.
Publicado: (2016) -
COVID‐19 pandemic‐related lockdown: response time is more important than its strictness
por: Loewenthal, Gil, et al.
Publicado: (2020) -
A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action
por: Abadi, Shiran, et al.
Publicado: (2017)