Cargando…
Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain–Machine Interface (BMI)
Mental workload is a neuroergonomic human factor, which is widely used in planning a system's safety and areas like brain–machine interface (BMI), neurofeedback, and assistive technologies. Robotic prosthetics methodologies are employed for assisting hemiplegic patients in performing routine ac...
Autores principales: | Asgher, Umer, Khan, Muhammad Jawad, Asif Nizami, Muhammad Hamza, Khalil, Khurram, Ahmad, Riaz, Ayaz, Yasar, Naseer, Noman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012849/ https://www.ncbi.nlm.nih.gov/pubmed/33815084 http://dx.doi.org/10.3389/fnbot.2021.605751 |
Ejemplares similares
-
Novel fNIRS study on homogeneous symmetric feature-based transfer learning for brain–computer interface
por: Khalil, Khurram, et al.
Publicado: (2022) -
Enhanced Accuracy for Multiclass Mental Workload Detection Using Long Short-Term Memory for Brain–Computer Interface
por: Asgher, Umer, et al.
Publicado: (2020) -
Enhancing Classification Performance of fNIRS-BCI by Identifying Cortically Active Channels Using the z-Score Method
por: Nazeer, Hammad, et al.
Publicado: (2020) -
fNIRS-based Neurorobotic Interface for gait rehabilitation
por: Khan, Rayyan Azam, et al.
Publicado: (2018) -
EEG-fNIRS-based hybrid image construction and classification using CNN-LSTM
por: Mughal, Nabeeha Ehsan, et al.
Publicado: (2022)