Cargando…
Machine Learning Can Predict Total Death After Radiofrequency Ablation in Liver Cancer Patients
OBJECTIVE: Over 1 million new cases of hepatocellular carcinoma (HCC) are diagnosed worldwide every year. Its prognosis remains poor, and the 5-year survival rate in all disease stages is estimated to be between 10% and 20%. Radiofrequency ablation (RFA) has become an important local treatment for l...
Autores principales: | Tong, Jianhua, Liu, Panmiao, Ji, Muhuo, Wang, Ying, Xue, Qiong, Yang, Jian-Jun, Zhou, Cheng-Mao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8013536/ https://www.ncbi.nlm.nih.gov/pubmed/33854400 http://dx.doi.org/10.1177/11795549211000017 |
Ejemplares similares
-
Machine learning predicts lymph node metastasis of poorly differentiated-type intramucosal gastric cancer
por: Zhou, Cheng-Mao, et al.
Publicado: (2021) -
A comparative study of machine learning algorithms for predicting acute kidney injury after liver cancer resection
por: Lei, Lei, et al.
Publicado: (2020) -
Comparison of Wet Radiofrequency Ablation with Dry Radiofrequency Ablation and Radiofrequency Ablation Using Hypertonic Saline Preinjection: Ex Vivo Bovine Liver
por: Lee, Jeong Min, et al.
Publicado: (2004) -
Developing Machine Learning Algorithms to Predict Pulmonary Complications After Emergency Gastrointestinal Surgery
por: Xue, Qiong, et al.
Publicado: (2021) -
Machine learning-based risk models for procedural complications of radiofrequency ablation for atrial fibrillation
por: Li, Rong, et al.
Publicado: (2023)