Cargando…
Knowledge Transfer via Pre-training for Recommendation: A Review and Prospect
Recommender systems aim to provide item recommendations for users and are usually faced with data sparsity problems (e.g., cold start) in real-world scenarios. Recently pre-trained models have shown their effectiveness in knowledge transfer between domains and tasks, which can potentially alleviate...
Autores principales: | Zeng, Zheni, Xiao, Chaojun, Yao, Yuan, Xie, Ruobing, Liu, Zhiyuan, Lin, Fen, Lin, Leyu, Sun, Maosong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8013982/ https://www.ncbi.nlm.nih.gov/pubmed/33817631 http://dx.doi.org/10.3389/fdata.2021.602071 |
Ejemplares similares
-
Subgroup Invariant Perturbation for Unbiased Pre-Trained Model Prediction
por: Majumdar, Puspita, et al.
Publicado: (2021) -
Attribute-Aware Recommender System Based on Collaborative Filtering: Survey and Classification
por: Chen, Wen-Hao, et al.
Publicado: (2020) -
Universal skepticism of ChatGPT: a review of early literature on chat generative pre-trained transformer
por: Watters, Casey, et al.
Publicado: (2023) -
Adversarial Robustness of Deep Reinforcement Learning Based Dynamic Recommender Systems
por: Wang, Siyu, et al.
Publicado: (2022) -
Editorial: User Modeling and Recommendations
por: Helic, Denis, et al.
Publicado: (2022)