Cargando…

Water-Mediated Ionic Migration in Memristive Nanowires with a Tunable Resistive Switching Mechanism

[Image: see text] Memristive devices based on electrochemical resistive switching effects have been proposed as promising candidates for in-memory computing and for the realization of artificial neural networks. Despite great efforts toward understanding the nanoionic processes underlying resistive...

Descripción completa

Detalles Bibliográficos
Autores principales: Milano, Gianluca, Raffone, Federico, Luebben, Michael, Boarino, Luca, Cicero, Giancarlo, Valov, Ilia, Ricciardi, Carlo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8014891/
https://www.ncbi.nlm.nih.gov/pubmed/33052645
http://dx.doi.org/10.1021/acsami.0c13020
Descripción
Sumario:[Image: see text] Memristive devices based on electrochemical resistive switching effects have been proposed as promising candidates for in-memory computing and for the realization of artificial neural networks. Despite great efforts toward understanding the nanoionic processes underlying resistive switching phenomena, comprehension of the effect of competing redox processes on device functionalities from the materials perspective still represents a challenge. In this work, we experimentally and theoretically investigate the concurring reactions of silver and moisture and their impact on the electronic properties of a single-crystalline ZnO nanowire (NW). A decrease in electronic conductivity due to surface adsorption of moisture is observed, whereas, at the same time, water molecules reduce the energy barrier for Ag(+) ion migration on the NW surface, facilitating the conductive filament formation. By controlling the relative humidity, the ratio of intrinsic electronic conductivity and surface ionic conductivity can be tuned to modulate the device performance. The results achieved on a single-crystalline memristive model system shed new light on the dual nature of the mechanism of how moisture affects resistive switching behavior in memristive devices.