Cargando…
Organosolv Fractionation of Walnut Shell Biomass to Isolate Lignocellulosic Components for Chemical Upgrading of Lignin to Aromatics
[Image: see text] Renewable carbon sources are a rapidly growing field of research because of the finite supply of fossil carbon. The lignocellulosic biomass walnut shell (WS) is an attractive renewable feedstock because it has a high lignin content (38–44 wt %) and is an agricultural waste stream....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8014912/ https://www.ncbi.nlm.nih.gov/pubmed/33817473 http://dx.doi.org/10.1021/acsomega.0c05936 |
_version_ | 1783673583414804480 |
---|---|
author | Nishide, Rebecca N. Truong, Julianne H. Abu-Omar, Mahdi M. |
author_facet | Nishide, Rebecca N. Truong, Julianne H. Abu-Omar, Mahdi M. |
author_sort | Nishide, Rebecca N. |
collection | PubMed |
description | [Image: see text] Renewable carbon sources are a rapidly growing field of research because of the finite supply of fossil carbon. The lignocellulosic biomass walnut shell (WS) is an attractive renewable feedstock because it has a high lignin content (38–44 wt %) and is an agricultural waste stream. Lignin, a major component of lignocellulosic biomass that is currently a waste stream in pulping processes, has unique potential for chemical upgrading because its subunits are aromatic. In the interest of improving the sustainability and reducing the environmental impact of biomass processing, valorization of agricultural waste streams is important. Herein, three lab-scale, batch organosolv procedures are explored in the interest of optimal isolation of protected WS lignin (WSL). One system uses acetic acid, one MeOH, and the final EtOH as the primary solvent. The optimal condition for protected WSL isolation, which resulted in a 64% yield, was methanol and dilute sulfuric acid with formaldehyde to act as a protecting group at 170 °C. Select samples were upgraded by hydrogenolysis over a nickel catalyst. Protected lignin recovered from the optimal condition showed 77% by weight conversion to monomeric phenols, demonstrating that the protected WSL can selectively afford high value products. One key finding from this study was that MeOH is a superior solvent for isolating WSL versus EtOH because the latter exhibited lignin recondensation. The second was that the Ni/C-catalyzed reductive catalytic fractionation (RCF) directly of WS biomass was not selective relative to RCF of isolated WSL; conversion of raw WS to monomers produced significantly more side products. |
format | Online Article Text |
id | pubmed-8014912 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-80149122021-04-02 Organosolv Fractionation of Walnut Shell Biomass to Isolate Lignocellulosic Components for Chemical Upgrading of Lignin to Aromatics Nishide, Rebecca N. Truong, Julianne H. Abu-Omar, Mahdi M. ACS Omega [Image: see text] Renewable carbon sources are a rapidly growing field of research because of the finite supply of fossil carbon. The lignocellulosic biomass walnut shell (WS) is an attractive renewable feedstock because it has a high lignin content (38–44 wt %) and is an agricultural waste stream. Lignin, a major component of lignocellulosic biomass that is currently a waste stream in pulping processes, has unique potential for chemical upgrading because its subunits are aromatic. In the interest of improving the sustainability and reducing the environmental impact of biomass processing, valorization of agricultural waste streams is important. Herein, three lab-scale, batch organosolv procedures are explored in the interest of optimal isolation of protected WS lignin (WSL). One system uses acetic acid, one MeOH, and the final EtOH as the primary solvent. The optimal condition for protected WSL isolation, which resulted in a 64% yield, was methanol and dilute sulfuric acid with formaldehyde to act as a protecting group at 170 °C. Select samples were upgraded by hydrogenolysis over a nickel catalyst. Protected lignin recovered from the optimal condition showed 77% by weight conversion to monomeric phenols, demonstrating that the protected WSL can selectively afford high value products. One key finding from this study was that MeOH is a superior solvent for isolating WSL versus EtOH because the latter exhibited lignin recondensation. The second was that the Ni/C-catalyzed reductive catalytic fractionation (RCF) directly of WS biomass was not selective relative to RCF of isolated WSL; conversion of raw WS to monomers produced significantly more side products. American Chemical Society 2021-03-18 /pmc/articles/PMC8014912/ /pubmed/33817473 http://dx.doi.org/10.1021/acsomega.0c05936 Text en © 2021 American Chemical Society Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Nishide, Rebecca N. Truong, Julianne H. Abu-Omar, Mahdi M. Organosolv Fractionation of Walnut Shell Biomass to Isolate Lignocellulosic Components for Chemical Upgrading of Lignin to Aromatics |
title | Organosolv Fractionation of Walnut Shell Biomass to
Isolate Lignocellulosic Components for Chemical Upgrading of Lignin
to Aromatics |
title_full | Organosolv Fractionation of Walnut Shell Biomass to
Isolate Lignocellulosic Components for Chemical Upgrading of Lignin
to Aromatics |
title_fullStr | Organosolv Fractionation of Walnut Shell Biomass to
Isolate Lignocellulosic Components for Chemical Upgrading of Lignin
to Aromatics |
title_full_unstemmed | Organosolv Fractionation of Walnut Shell Biomass to
Isolate Lignocellulosic Components for Chemical Upgrading of Lignin
to Aromatics |
title_short | Organosolv Fractionation of Walnut Shell Biomass to
Isolate Lignocellulosic Components for Chemical Upgrading of Lignin
to Aromatics |
title_sort | organosolv fractionation of walnut shell biomass to
isolate lignocellulosic components for chemical upgrading of lignin
to aromatics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8014912/ https://www.ncbi.nlm.nih.gov/pubmed/33817473 http://dx.doi.org/10.1021/acsomega.0c05936 |
work_keys_str_mv | AT nishiderebeccan organosolvfractionationofwalnutshellbiomasstoisolatelignocellulosiccomponentsforchemicalupgradingoflignintoaromatics AT truongjulianneh organosolvfractionationofwalnutshellbiomasstoisolatelignocellulosiccomponentsforchemicalupgradingoflignintoaromatics AT abuomarmahdim organosolvfractionationofwalnutshellbiomasstoisolatelignocellulosiccomponentsforchemicalupgradingoflignintoaromatics |