Cargando…

A Quantitative Molecular Orbital Perspective of the Chalcogen Bond

We have quantum chemically analyzed the structure and stability of archetypal chalcogen‐bonded model complexes D(2)Ch⋅⋅⋅A(−) (Ch = O, S, Se, Te; D, A = F, Cl, Br) using relativistic density functional theory at ZORA‐M06/QZ4P. Our purpose is twofold: (i) to compute accurate trends in chalcogen‐bond s...

Descripción completa

Detalles Bibliográficos
Autores principales: de Azevedo Santos, Lucas, van der Lubbe, Stephanie C. C., Hamlin, Trevor A., Ramalho, Teodorico C., Matthias Bickelhaupt, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8015733/
https://www.ncbi.nlm.nih.gov/pubmed/33594829
http://dx.doi.org/10.1002/open.202000323
_version_ 1783673735601979392
author de Azevedo Santos, Lucas
van der Lubbe, Stephanie C. C.
Hamlin, Trevor A.
Ramalho, Teodorico C.
Matthias Bickelhaupt, F.
author_facet de Azevedo Santos, Lucas
van der Lubbe, Stephanie C. C.
Hamlin, Trevor A.
Ramalho, Teodorico C.
Matthias Bickelhaupt, F.
author_sort de Azevedo Santos, Lucas
collection PubMed
description We have quantum chemically analyzed the structure and stability of archetypal chalcogen‐bonded model complexes D(2)Ch⋅⋅⋅A(−) (Ch = O, S, Se, Te; D, A = F, Cl, Br) using relativistic density functional theory at ZORA‐M06/QZ4P. Our purpose is twofold: (i) to compute accurate trends in chalcogen‐bond strength based on a set of consistent data; and (ii) to rationalize these trends in terms of detailed analyses of the bonding mechanism based on quantitative Kohn‐Sham molecular orbital (KS‐MO) theory in combination with a canonical energy decomposition analysis (EDA). At odds with the commonly accepted view of chalcogen bonding as a predominantly electrostatic phenomenon, we find that chalcogen bonds, just as hydrogen and halogen bonds, have a significant covalent character stemming from strong HOMO−LUMO interactions. Besides providing significantly to the bond strength, these orbital interactions are also manifested by the structural distortions they induce as well as the associated charge transfer from A(−) to D(2)Ch.
format Online
Article
Text
id pubmed-8015733
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-80157332021-04-02 A Quantitative Molecular Orbital Perspective of the Chalcogen Bond de Azevedo Santos, Lucas van der Lubbe, Stephanie C. C. Hamlin, Trevor A. Ramalho, Teodorico C. Matthias Bickelhaupt, F. ChemistryOpen Full Papers We have quantum chemically analyzed the structure and stability of archetypal chalcogen‐bonded model complexes D(2)Ch⋅⋅⋅A(−) (Ch = O, S, Se, Te; D, A = F, Cl, Br) using relativistic density functional theory at ZORA‐M06/QZ4P. Our purpose is twofold: (i) to compute accurate trends in chalcogen‐bond strength based on a set of consistent data; and (ii) to rationalize these trends in terms of detailed analyses of the bonding mechanism based on quantitative Kohn‐Sham molecular orbital (KS‐MO) theory in combination with a canonical energy decomposition analysis (EDA). At odds with the commonly accepted view of chalcogen bonding as a predominantly electrostatic phenomenon, we find that chalcogen bonds, just as hydrogen and halogen bonds, have a significant covalent character stemming from strong HOMO−LUMO interactions. Besides providing significantly to the bond strength, these orbital interactions are also manifested by the structural distortions they induce as well as the associated charge transfer from A(−) to D(2)Ch. John Wiley and Sons Inc. 2021-02-17 /pmc/articles/PMC8015733/ /pubmed/33594829 http://dx.doi.org/10.1002/open.202000323 Text en © 2021 The Authors. Published by Wiley-VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
de Azevedo Santos, Lucas
van der Lubbe, Stephanie C. C.
Hamlin, Trevor A.
Ramalho, Teodorico C.
Matthias Bickelhaupt, F.
A Quantitative Molecular Orbital Perspective of the Chalcogen Bond
title A Quantitative Molecular Orbital Perspective of the Chalcogen Bond
title_full A Quantitative Molecular Orbital Perspective of the Chalcogen Bond
title_fullStr A Quantitative Molecular Orbital Perspective of the Chalcogen Bond
title_full_unstemmed A Quantitative Molecular Orbital Perspective of the Chalcogen Bond
title_short A Quantitative Molecular Orbital Perspective of the Chalcogen Bond
title_sort quantitative molecular orbital perspective of the chalcogen bond
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8015733/
https://www.ncbi.nlm.nih.gov/pubmed/33594829
http://dx.doi.org/10.1002/open.202000323
work_keys_str_mv AT deazevedosantoslucas aquantitativemolecularorbitalperspectiveofthechalcogenbond
AT vanderlubbestephaniecc aquantitativemolecularorbitalperspectiveofthechalcogenbond
AT hamlintrevora aquantitativemolecularorbitalperspectiveofthechalcogenbond
AT ramalhoteodoricoc aquantitativemolecularorbitalperspectiveofthechalcogenbond
AT matthiasbickelhauptf aquantitativemolecularorbitalperspectiveofthechalcogenbond
AT deazevedosantoslucas quantitativemolecularorbitalperspectiveofthechalcogenbond
AT vanderlubbestephaniecc quantitativemolecularorbitalperspectiveofthechalcogenbond
AT hamlintrevora quantitativemolecularorbitalperspectiveofthechalcogenbond
AT ramalhoteodoricoc quantitativemolecularorbitalperspectiveofthechalcogenbond
AT matthiasbickelhauptf quantitativemolecularorbitalperspectiveofthechalcogenbond