Cargando…

Salmonella Effector SpvB Inhibits NF-κB Activity via KEAP1-Mediated Downregulation of IKKβ

Bacterial pathogens have a broad arsenal of genes that are tightly regulated and coordinated to facilitate adaptation to alter host inflammatory response and prolong intracellular bacterial survival. Salmonella enterica serovar Typhimurium utilizes a type III secretion system (T3SS) to deliver effec...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Sidi, Deng, Qifeng, Sun, Lanqing, Zhu, Yuan, Dong, Kedi, Wu, Shuyan, Huang, Rui, Li, Yuanyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8015805/
https://www.ncbi.nlm.nih.gov/pubmed/33816345
http://dx.doi.org/10.3389/fcimb.2021.641412
Descripción
Sumario:Bacterial pathogens have a broad arsenal of genes that are tightly regulated and coordinated to facilitate adaptation to alter host inflammatory response and prolong intracellular bacterial survival. Salmonella enterica serovar Typhimurium utilizes a type III secretion system (T3SS) to deliver effector molecules into host cells and regulate signal transduction pathways such as NF-κB, thereby resulting in salmonellosis. SpvB, a pSLT-encoded cytotoxic protein secreted by Salmonella pathogenicity island-2 T3SS, is associated with enhanced Salmonella survival and intracellular replication. In this report, we characterized the effects of SpvB on NF-κB signaling pathway. We showed that SpvB has a potent and specific ability to prevent NF-κB activation by targeting IκB kinase β (IKKβ). Previous studies from our laboratory showed that SpvB decreases Nrf2 through its C-terminal domain. Here we further demonstrated that KEAP1, a cytoplasmic protein that interacts with Nrf2 and mediates its proteasomal degradation, is involved in SpvB-induced downregulation of IKKβ expression and phosphorylation. Reduction of KEAP1 by small-interfering RNA prevented the suppression of IKKβ and its phosphorylation mediated by SpvB. These findings revealed a novel mechanism by which Salmonella modulates NF-κB activity to ultimately facilitate intracellular bacterial survival and proliferation and delay host immune response to establish infection.