Cargando…
Potassium supplementation blunts the effects of high salt intake on serum retinol‐binding protein 4 levels in healthy individuals
AIMS/INTRODUCTION: Excessive dietary salt or low potassium intakes are strongly correlated with insulin resistance (IR) and type 2 diabetes mellitus. In epidemiological and experimental studies, increased serum retinol‐binding protein 4 (RBP4) contributes to the pathogenesis of type 2 diabetes melli...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8015821/ https://www.ncbi.nlm.nih.gov/pubmed/33460257 http://dx.doi.org/10.1111/jdi.13376 |
Sumario: | AIMS/INTRODUCTION: Excessive dietary salt or low potassium intakes are strongly correlated with insulin resistance (IR) and type 2 diabetes mellitus. In epidemiological and experimental studies, increased serum retinol‐binding protein 4 (RBP4) contributes to the pathogenesis of type 2 diabetes mellitus. Herein, we hypothesized that RBP4 might be an adipocyte‐derived “signal” that plays the crucial role in salt‐related insulin resistance or type 2 diabetes mellitus. This study aimed to assess whether salt consumption and potassium supplementation influence serum RBP4 levels in healthy individuals. MATERIALS AND METHODS: A total of 42 participants (aged 25–50 years) in a rural area of Northern China were successively provided normal (3 days at baseline), low‐salt (7 days; 3 g/day NaCl) and high‐salt (7 days; 18 g/day) diets, and a high‐salt diet with potassium additive (7 days; 18 g/day NaCl and 4.5 g/day KCl). Urinary sodium and potassium were measured to ensure compliance to dietary intervention. Then, RBP4 levels were evaluated by enzyme‐linked immunosorbent assay. RESULTS: High salt intake significantly raised serum RBP4 levels in healthy participants (17.5 ± 0.68 vs 28.6 ± 1.02 µg/mL). This phenomenon was abrogated by potassium supplementation (28.6 ± 1.02 vs 17.6 ± 0.88 µg/mL). In addition, RBP4 levels presented positive (r = 0.528, P < 0.01) and negative (r = −0.506, P < 0.01) associations with 24‐h urinary sodium‐ and potassium excretion levels. CONCLUSIONS: RBP4 synthesis is motivated by high salt intake and revoked by potassium supplementation. Our pioneer work has contributed to the present understanding of salt‐induced insulin resistance or type 2 diabetes mellitus. |
---|