Cargando…
Modeling expression ranks for noise-tolerant differential expression analysis of scRNA-seq data
Systematic delineation of complex biological systems is an ever-challenging and resource-intensive process. Single-cell transcriptomics allows us to study cell-to-cell variability in complex tissues at an unprecedented resolution. Accurate modeling of gene expression plays a critical role in the sta...
Autores principales: | Gupta, Krishan, Lalit, Manan, Biswas, Aditya, Sanada, Chad D., Greene, Cassandra, Hukari, Kyle, Maulik, Ujjwal, Bandyopadhyay, Sanghamitra, Ramalingam, Naveen, Ahuja, Gaurav, Ghosh, Abhik, Sengupta, Debarka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8015842/ https://www.ncbi.nlm.nih.gov/pubmed/33674351 http://dx.doi.org/10.1101/gr.267070.120 |
Ejemplares similares
-
dropClust: efficient clustering of ultra-large scRNA-seq data
por: Sinha, Debajyoti, et al.
Publicado: (2018) -
LSH-GAN enables in-silico generation of cells for small sample high dimensional scRNA-seq data
por: Lall, Snehalika, et al.
Publicado: (2022) -
Combining Pareto-optimal clusters using supervised learning for identifying co-expressed genes
por: Maulik, Ujjwal, et al.
Publicado: (2009) -
A rank-based marker selection method for high throughput scRNA-seq data
por: Vargo, Alexander H. S., et al.
Publicado: (2020) -
Analyzing Large Gene Expression and Methylation Data Profiles Using StatBicRM: Statistical Biclustering-Based Rule Mining
por: Maulik, Ujjwal, et al.
Publicado: (2015)