Cargando…

Agent-based simulation of pedestrian dynamics for exposure time estimation in epidemic risk assessment

PURPOSE: With the coronavirus disease 2019 (COVID-19) pandemic spreading across the world, protective measures for containing the virus are essential, especially as long as no vaccine or effective treatment is available. One important measure is the so-called physical distancing or social distancing...

Descripción completa

Detalles Bibliográficos
Autores principales: Harweg, Thomas, Bachmann, Daniel, Weichert, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8015933/
https://www.ncbi.nlm.nih.gov/pubmed/33824850
http://dx.doi.org/10.1007/s10389-021-01489-y
Descripción
Sumario:PURPOSE: With the coronavirus disease 2019 (COVID-19) pandemic spreading across the world, protective measures for containing the virus are essential, especially as long as no vaccine or effective treatment is available. One important measure is the so-called physical distancing or social distancing. METHODS: In this paper, we propose an agent-based numerical simulation of pedestrian dynamics in order to assess the behavior of pedestrians in public places in the context of contact transmission of infectious diseases like COVID-19, and to gather insights about exposure times and the overall effectiveness of distancing measures. RESULTS: To abide by the minimum distance of 1.5 m stipulated by the German government at an infection rate of 2%, our simulation results suggest that a density of one person per 16m(2) or below is sufficient. CONCLUSIONS: The results of this study give insight into how physical distancing as a protective measure can be carried out more efficiently to help reduce the spread of COVID-19.