Cargando…
Neuropeptide B promotes proliferation and differentiation of rat brown primary preadipocytes
Neuropeptide B (NPB) is reported to regulate energy homeostasis and metabolism via the NPBWR1 and NPBWR2 receptors in various tissues. However, the molecular mechanisms triggered from their interaction are not well investigated in brown adipose tissue. In this study, we specifically analyzed the rol...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8016125/ https://www.ncbi.nlm.nih.gov/pubmed/33629519 http://dx.doi.org/10.1002/2211-5463.13128 |
Sumario: | Neuropeptide B (NPB) is reported to regulate energy homeostasis and metabolism via the NPBWR1 and NPBWR2 receptors in various tissues. However, the molecular mechanisms triggered from their interaction are not well investigated in brown adipose tissue. In this study, we specifically analyzed the role of NPB in controlling brown adipogenesis in rat brown preadipocytes. We first detected the expression of NPBWR1 and NPB on mRNA and protein level in brown preadipocytes and observed that NPB increased viability and proliferation of preadipocytes. Moreover, NPB stimulated expression of adipogenic genes (Prdm16, Ucp1) and suppressed the expression of antiadipogenic preadipocyte factor 1 (Pref1) during the differentiation process. Altogether, this led to an increase in intracellular lipid accumulation during preadipocyte differentiation, coupled with an increase in adrenaline‐induced oxygen consumption mediated by NPB. Furthermore, Ucp1 expression stimulated by NPB was attenuated by blockade of p38 kinase. In summary, we conclude that NPB promotes proliferation and differentiation of rat brown preadipocytes via p38‐dependent mechanism and plays an important role in controlling brown adipose tissue formation. |
---|