Cargando…

Astragaloside IV protects against iron loading‐induced abnormal differentiation of bone marrow mesenchymal stem cells (BMSCs)

Iron loading has been reported to be a common stress in the development of cells, and this might be related to bone loss and osteoporosis. Astragaloside IV (ASI‐IV), a pure compound derived from Radix Astragali, has been reported to exhibit cardioprotective, anti‐inflammatory, antioxidant, antiasthm...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Hui, Du, Jianyang, Ren, Huan, Yang, Guofu, Wang, Wenbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8016140/
https://www.ncbi.nlm.nih.gov/pubmed/33445204
http://dx.doi.org/10.1002/2211-5463.13082
Descripción
Sumario:Iron loading has been reported to be a common stress in the development of cells, and this might be related to bone loss and osteoporosis. Astragaloside IV (ASI‐IV), a pure compound derived from Radix Astragali, has been reported to exhibit cardioprotective, anti‐inflammatory, antioxidant, antiasthmatic and anticancer effects. The aim of this study was to investigate whether ASI‐IV could reverse iron loading‐induced inhibition of cell viability, proliferation, pluripotency and osteogenesis and promote adipogenesis of bone marrow mesenchymal stem cells (BMSCs). Ferric ammonium citrate (FAC) was used to stimulate iron loading conditions. ASI‐IV was observed to ameliorate the FAC‐induced reduction of cell viability, proliferation, pluripotency and osteogenesis of BMSCs. In addition, ASI‐IV could block the increased adipogenesis of BMSCs after FAC treatment. We intraperitoneally injected mice with 250 mg·kg(−1) iron dextran, with or without ASI‐IV (40 mg·kg(−1)), for 4 weeks. ASI‐IV inhibited the iron loading‐induced bone loss of these mice. Furthermore, ASI‐IV played a protective role in iron loading‐induced abnormal differentiation of BMSCs by regulating iron homeostasis and metabolism. In summary, our study suggesteds that ASI‐IV might have potentials for development into a novel therapeutic strategy for the treatment of iron loading‐induced abnormal differentiation of BMSCs and osteoporosis.