Cargando…
Machine Learning of Allosteric Effects: The Analysis of Ligand-Induced Dynamics to Predict Functional Effects in TRAP1
[Image: see text] Allosteric molecules provide a powerful means to modulate protein function. However, the effect of such ligands on distal orthosteric sites cannot be easily described by classical docking methods. Here, we applied machine learning (ML) approaches to expose the links between local d...
Autores principales: | Ferraro, Mariarosaria, Moroni, Elisabetta, Ippoliti, Emiliano, Rinaldi, Silvia, Sanchez-Martin, Carlos, Rasola, Andrea, Pavarino, Luca F., Colombo, Giorgio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8016192/ https://www.ncbi.nlm.nih.gov/pubmed/33369425 http://dx.doi.org/10.1021/acs.jpcb.0c09742 |
Ejemplares similares
-
Machine Learning Prediction of Allosteric Drug Activity
from Molecular Dynamics
por: Marchetti, Filippo, et al.
Publicado: (2021) -
Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands
por: Vettoretti, Gerolamo, et al.
Publicado: (2016) -
Dynamically Shaping Chaperones. Allosteric Modulators of HSP90 Family as Regulatory Tools of Cell Metabolism in Neoplastic Progression
por: Sanchez-Martin, Carlos, et al.
Publicado: (2020) -
The Chaperone TRAP1 As a Modulator of the Mitochondrial Adaptations in Cancer Cells
por: Masgras, Ionica, et al.
Publicado: (2017) -
HIF1α-dependent induction of the mitochondrial chaperone TRAP1 regulates bioenergetic adaptations to hypoxia
por: Laquatra, Claudio, et al.
Publicado: (2021)