Cargando…
Real-time recognition of spraying area for UAV sprayers using a deep learning approach
Agricultural production is vital for the stability of the country’s economy. Controlling weed infestation through agrochemicals is necessary for increasing crop productivity. However, its excessive use has severe repercussions on the environment (damaging the ecosystem) and the human operators expos...
Autores principales: | Khan, Shahbaz, Tufail, Muhammad, Khan, Muhammad Tahir, Khan, Zubair Ahmad, Iqbal, Javaid, Wasim, Arsalan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8016340/ https://www.ncbi.nlm.nih.gov/pubmed/33793634 http://dx.doi.org/10.1371/journal.pone.0249436 |
Ejemplares similares
-
Precision agricultural robotic sprayer with real-time Tobacco recognition and spraying system based on deep learning
por: Nasir, Fazal E., et al.
Publicado: (2023) -
A novel semi-supervised framework for UAV based crop/weed classification
por: Khan, Shahbaz, et al.
Publicado: (2021) -
Stereoscopic plant-protection system integrating UAVs and autonomous ground sprayers for orchards
por: Jiang, Shijie, et al.
Publicado: (2022) -
Enhancing the Quality of Spray Application in IRS: Evaluation of the Micron Track Sprayer
por: Snetselaar, Janneke, et al.
Publicado: (2022) -
Task allocation in multi-robot system using resource sharing with dynamic threshold approach
por: Fazal, Nayyer, et al.
Publicado: (2022)