Cargando…
DeepPurpose: a deep learning library for drug–target interaction prediction
SUMMARY: Accurate prediction of drug–target interactions (DTI) is crucial for drug discovery. Recently, deep learning (DL) models for show promising performance for DTI prediction. However, these models can be difficult to use for both computer scientists entering the biomedical field and bioinforma...
Autores principales: | Huang, Kexin, Fu, Tianfan, Glass, Lucas M, Zitnik, Marinka, Xiao, Cao, Sun, Jimeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8016467/ https://www.ncbi.nlm.nih.gov/pubmed/33275143 http://dx.doi.org/10.1093/bioinformatics/btaa1005 |
Ejemplares similares
-
Identification of drug compounds for keloids and hypertrophic scars: drug discovery based on text mining and DeepPurpose
por: Pan, Yuyan, et al.
Publicado: (2021) -
SkipGNN: predicting molecular interactions with skip-graph networks
por: Huang, Kexin, et al.
Publicado: (2020) -
MOLER: Incorporate Molecule-Level Reward to Enhance Deep Generative
Model for Molecule Optimization
por: Fu, Tianfan, et al.
Publicado: (2022) -
YAMDA: thousandfold speedup of EM-based motif discovery using deep learning libraries and GPU
por: Quang, Daniel, et al.
Publicado: (2018) -
HINT: Hierarchical interaction network for clinical-trial-outcome predictions
por: Fu, Tianfan, et al.
Publicado: (2022)