Cargando…
Tachykinin signaling inhibits task-specific behavioral responsiveness in honeybee workers
Behavioral specialization is key to the success of social insects and leads to division of labor among colony members. Response thresholds to task-specific stimuli are thought to proximally regulate behavioral specialization, but their neurobiological regulation is complex and not well understood. H...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8016481/ https://www.ncbi.nlm.nih.gov/pubmed/33760729 http://dx.doi.org/10.7554/eLife.64830 |
Sumario: | Behavioral specialization is key to the success of social insects and leads to division of labor among colony members. Response thresholds to task-specific stimuli are thought to proximally regulate behavioral specialization, but their neurobiological regulation is complex and not well understood. Here, we show that response thresholds to task-relevant stimuli correspond to the specialization of three behavioral phenotypes of honeybee workers in the well-studied and important Apis mellifera and Apis cerana. Quantitative neuropeptidome comparisons suggest two tachykinin-related peptides (TRP2 and TRP3) as candidates for the modification of these response thresholds. Based on our characterization of their receptor binding and downstream signaling, we confirm a functional role of tachykinin signaling in regulating specific responsiveness of honeybee workers: TRP2 injection and RNAi-mediated downregulation cause consistent, opposite effects on responsiveness to task-specific stimuli of each behaviorally specialized phenotype but not to stimuli that are unrelated to their tasks. Thus, our study demonstrates that TRP signaling regulates the degree of task-specific responsiveness of specialized honeybee workers and may control the context specificity of behavior in animals more generally. |
---|