Cargando…
Application of Seq2Seq Models on Code Correction
We apply various seq2seq models on programming language correction tasks on Juliet Test Suite for C/C++ and Java of Software Assurance Reference Datasets and achieve 75% (for C/C++) and 56% (for Java) repair rates on these tasks. We introduce pyramid encoder in these seq2seq models, which significan...
Autores principales: | Huang, Shan, Zhou, Xiao, Chin, Sang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017285/ https://www.ncbi.nlm.nih.gov/pubmed/33817628 http://dx.doi.org/10.3389/frai.2021.590215 |
Ejemplares similares
-
Python code smells detection using conventional machine learning models
por: Sandouka, Rana, et al.
Publicado: (2023) -
Cracking the genetic code with neural networks
por: Joiret, Marc, et al.
Publicado: (2023) -
EPPO ontology: a semantic-driven approach for plant and pest codes representation
por: Ayllón-Benitez, Aarón, et al.
Publicado: (2023) -
A survey on exponential random graph models: an application perspective
por: Ghafouri, Saeid, et al.
Publicado: (2020) -
An Application of an Embedded Model Estimator to a Synthetic Nonstationary Reservoir Model With Multiple Secondary Variables
por: Daly, Colin
Publicado: (2021)