Cargando…
Controlling Magnetic Anisotropy in a Zero-Dimensional S = 1 Magnet Using Isotropic Cation Substitution
[Image: see text] The [Zn(1–x)Ni(x)(HF(2))(pyz)(2)]SbF(6) (x = 0.2; pyz = pyrazine) solid solution exhibits a zero-field splitting (D) that is 22% larger [D = 16.2(2) K (11.3(2) cm(–1))] than that observed in the x = 1 material [D = 13.3(1) K (9.2(1) cm(–1))]. The substantial change in D is accompli...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017523/ https://www.ncbi.nlm.nih.gov/pubmed/33724822 http://dx.doi.org/10.1021/jacs.0c12516 |
_version_ | 1783674072832409600 |
---|---|
author | Manson, Jamie L. Curley, Samuel P. M. Williams, Robert C. Walker, David Goddard, Paul A. Ozarowski, Andrew Johnson, Roger D. Vibhakar, Anuradha M. Villa, Danielle Y. Rhodehouse, Melissa L. Birnbaum, Serena M. Singleton, John |
author_facet | Manson, Jamie L. Curley, Samuel P. M. Williams, Robert C. Walker, David Goddard, Paul A. Ozarowski, Andrew Johnson, Roger D. Vibhakar, Anuradha M. Villa, Danielle Y. Rhodehouse, Melissa L. Birnbaum, Serena M. Singleton, John |
author_sort | Manson, Jamie L. |
collection | PubMed |
description | [Image: see text] The [Zn(1–x)Ni(x)(HF(2))(pyz)(2)]SbF(6) (x = 0.2; pyz = pyrazine) solid solution exhibits a zero-field splitting (D) that is 22% larger [D = 16.2(2) K (11.3(2) cm(–1))] than that observed in the x = 1 material [D = 13.3(1) K (9.2(1) cm(–1))]. The substantial change in D is accomplished by an anisotropic lattice expansion in the MN(4) (M = Zn or Ni) plane, wherein the increased concentration of isotropic Zn(II) ions induces a nonlinear variation in M-F and M-N bond lengths. In this, we exploit the relative donor atom hardness, where M-F and M-N form strong ionic and weak coordinate covalent bonds, respectively, the latter being more sensitive to substitution of Ni by the slightly larger Zn(II) ion. In this way, we are able to tune the single-ion anisotropy of a magnetic lattice site by Zn-substitution on nearby sites. This effect has possible applications in the field of single-ion magnets and the design of other molecule-based magnetic systems. |
format | Online Article Text |
id | pubmed-8017523 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-80175232021-04-05 Controlling Magnetic Anisotropy in a Zero-Dimensional S = 1 Magnet Using Isotropic Cation Substitution Manson, Jamie L. Curley, Samuel P. M. Williams, Robert C. Walker, David Goddard, Paul A. Ozarowski, Andrew Johnson, Roger D. Vibhakar, Anuradha M. Villa, Danielle Y. Rhodehouse, Melissa L. Birnbaum, Serena M. Singleton, John J Am Chem Soc [Image: see text] The [Zn(1–x)Ni(x)(HF(2))(pyz)(2)]SbF(6) (x = 0.2; pyz = pyrazine) solid solution exhibits a zero-field splitting (D) that is 22% larger [D = 16.2(2) K (11.3(2) cm(–1))] than that observed in the x = 1 material [D = 13.3(1) K (9.2(1) cm(–1))]. The substantial change in D is accomplished by an anisotropic lattice expansion in the MN(4) (M = Zn or Ni) plane, wherein the increased concentration of isotropic Zn(II) ions induces a nonlinear variation in M-F and M-N bond lengths. In this, we exploit the relative donor atom hardness, where M-F and M-N form strong ionic and weak coordinate covalent bonds, respectively, the latter being more sensitive to substitution of Ni by the slightly larger Zn(II) ion. In this way, we are able to tune the single-ion anisotropy of a magnetic lattice site by Zn-substitution on nearby sites. This effect has possible applications in the field of single-ion magnets and the design of other molecule-based magnetic systems. American Chemical Society 2021-03-16 2021-03-31 /pmc/articles/PMC8017523/ /pubmed/33724822 http://dx.doi.org/10.1021/jacs.0c12516 Text en © 2021 The Authors. Published by American Chemical Society Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Manson, Jamie L. Curley, Samuel P. M. Williams, Robert C. Walker, David Goddard, Paul A. Ozarowski, Andrew Johnson, Roger D. Vibhakar, Anuradha M. Villa, Danielle Y. Rhodehouse, Melissa L. Birnbaum, Serena M. Singleton, John Controlling Magnetic Anisotropy in a Zero-Dimensional S = 1 Magnet Using Isotropic Cation Substitution |
title | Controlling
Magnetic Anisotropy in a Zero-Dimensional S = 1 Magnet
Using Isotropic Cation Substitution |
title_full | Controlling
Magnetic Anisotropy in a Zero-Dimensional S = 1 Magnet
Using Isotropic Cation Substitution |
title_fullStr | Controlling
Magnetic Anisotropy in a Zero-Dimensional S = 1 Magnet
Using Isotropic Cation Substitution |
title_full_unstemmed | Controlling
Magnetic Anisotropy in a Zero-Dimensional S = 1 Magnet
Using Isotropic Cation Substitution |
title_short | Controlling
Magnetic Anisotropy in a Zero-Dimensional S = 1 Magnet
Using Isotropic Cation Substitution |
title_sort | controlling
magnetic anisotropy in a zero-dimensional s = 1 magnet
using isotropic cation substitution |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017523/ https://www.ncbi.nlm.nih.gov/pubmed/33724822 http://dx.doi.org/10.1021/jacs.0c12516 |
work_keys_str_mv | AT mansonjamiel controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution AT curleysamuelpm controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution AT williamsrobertc controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution AT walkerdavid controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution AT goddardpaula controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution AT ozarowskiandrew controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution AT johnsonrogerd controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution AT vibhakaranuradham controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution AT villadanielley controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution AT rhodehousemelissal controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution AT birnbaumserenam controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution AT singletonjohn controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution |