Cargando…

Controlling Magnetic Anisotropy in a Zero-Dimensional S = 1 Magnet Using Isotropic Cation Substitution

[Image: see text] The [Zn(1–x)Ni(x)(HF(2))(pyz)(2)]SbF(6) (x = 0.2; pyz = pyrazine) solid solution exhibits a zero-field splitting (D) that is 22% larger [D = 16.2(2) K (11.3(2) cm(–1))] than that observed in the x = 1 material [D = 13.3(1) K (9.2(1) cm(–1))]. The substantial change in D is accompli...

Descripción completa

Detalles Bibliográficos
Autores principales: Manson, Jamie L., Curley, Samuel P. M., Williams, Robert C., Walker, David, Goddard, Paul A., Ozarowski, Andrew, Johnson, Roger D., Vibhakar, Anuradha M., Villa, Danielle Y., Rhodehouse, Melissa L., Birnbaum, Serena M., Singleton, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017523/
https://www.ncbi.nlm.nih.gov/pubmed/33724822
http://dx.doi.org/10.1021/jacs.0c12516
_version_ 1783674072832409600
author Manson, Jamie L.
Curley, Samuel P. M.
Williams, Robert C.
Walker, David
Goddard, Paul A.
Ozarowski, Andrew
Johnson, Roger D.
Vibhakar, Anuradha M.
Villa, Danielle Y.
Rhodehouse, Melissa L.
Birnbaum, Serena M.
Singleton, John
author_facet Manson, Jamie L.
Curley, Samuel P. M.
Williams, Robert C.
Walker, David
Goddard, Paul A.
Ozarowski, Andrew
Johnson, Roger D.
Vibhakar, Anuradha M.
Villa, Danielle Y.
Rhodehouse, Melissa L.
Birnbaum, Serena M.
Singleton, John
author_sort Manson, Jamie L.
collection PubMed
description [Image: see text] The [Zn(1–x)Ni(x)(HF(2))(pyz)(2)]SbF(6) (x = 0.2; pyz = pyrazine) solid solution exhibits a zero-field splitting (D) that is 22% larger [D = 16.2(2) K (11.3(2) cm(–1))] than that observed in the x = 1 material [D = 13.3(1) K (9.2(1) cm(–1))]. The substantial change in D is accomplished by an anisotropic lattice expansion in the MN(4) (M = Zn or Ni) plane, wherein the increased concentration of isotropic Zn(II) ions induces a nonlinear variation in M-F and M-N bond lengths. In this, we exploit the relative donor atom hardness, where M-F and M-N form strong ionic and weak coordinate covalent bonds, respectively, the latter being more sensitive to substitution of Ni by the slightly larger Zn(II) ion. In this way, we are able to tune the single-ion anisotropy of a magnetic lattice site by Zn-substitution on nearby sites. This effect has possible applications in the field of single-ion magnets and the design of other molecule-based magnetic systems.
format Online
Article
Text
id pubmed-8017523
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-80175232021-04-05 Controlling Magnetic Anisotropy in a Zero-Dimensional S = 1 Magnet Using Isotropic Cation Substitution Manson, Jamie L. Curley, Samuel P. M. Williams, Robert C. Walker, David Goddard, Paul A. Ozarowski, Andrew Johnson, Roger D. Vibhakar, Anuradha M. Villa, Danielle Y. Rhodehouse, Melissa L. Birnbaum, Serena M. Singleton, John J Am Chem Soc [Image: see text] The [Zn(1–x)Ni(x)(HF(2))(pyz)(2)]SbF(6) (x = 0.2; pyz = pyrazine) solid solution exhibits a zero-field splitting (D) that is 22% larger [D = 16.2(2) K (11.3(2) cm(–1))] than that observed in the x = 1 material [D = 13.3(1) K (9.2(1) cm(–1))]. The substantial change in D is accomplished by an anisotropic lattice expansion in the MN(4) (M = Zn or Ni) plane, wherein the increased concentration of isotropic Zn(II) ions induces a nonlinear variation in M-F and M-N bond lengths. In this, we exploit the relative donor atom hardness, where M-F and M-N form strong ionic and weak coordinate covalent bonds, respectively, the latter being more sensitive to substitution of Ni by the slightly larger Zn(II) ion. In this way, we are able to tune the single-ion anisotropy of a magnetic lattice site by Zn-substitution on nearby sites. This effect has possible applications in the field of single-ion magnets and the design of other molecule-based magnetic systems. American Chemical Society 2021-03-16 2021-03-31 /pmc/articles/PMC8017523/ /pubmed/33724822 http://dx.doi.org/10.1021/jacs.0c12516 Text en © 2021 The Authors. Published by American Chemical Society Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Manson, Jamie L.
Curley, Samuel P. M.
Williams, Robert C.
Walker, David
Goddard, Paul A.
Ozarowski, Andrew
Johnson, Roger D.
Vibhakar, Anuradha M.
Villa, Danielle Y.
Rhodehouse, Melissa L.
Birnbaum, Serena M.
Singleton, John
Controlling Magnetic Anisotropy in a Zero-Dimensional S = 1 Magnet Using Isotropic Cation Substitution
title Controlling Magnetic Anisotropy in a Zero-Dimensional S = 1 Magnet Using Isotropic Cation Substitution
title_full Controlling Magnetic Anisotropy in a Zero-Dimensional S = 1 Magnet Using Isotropic Cation Substitution
title_fullStr Controlling Magnetic Anisotropy in a Zero-Dimensional S = 1 Magnet Using Isotropic Cation Substitution
title_full_unstemmed Controlling Magnetic Anisotropy in a Zero-Dimensional S = 1 Magnet Using Isotropic Cation Substitution
title_short Controlling Magnetic Anisotropy in a Zero-Dimensional S = 1 Magnet Using Isotropic Cation Substitution
title_sort controlling magnetic anisotropy in a zero-dimensional s = 1 magnet using isotropic cation substitution
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017523/
https://www.ncbi.nlm.nih.gov/pubmed/33724822
http://dx.doi.org/10.1021/jacs.0c12516
work_keys_str_mv AT mansonjamiel controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution
AT curleysamuelpm controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution
AT williamsrobertc controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution
AT walkerdavid controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution
AT goddardpaula controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution
AT ozarowskiandrew controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution
AT johnsonrogerd controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution
AT vibhakaranuradham controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution
AT villadanielley controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution
AT rhodehousemelissal controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution
AT birnbaumserenam controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution
AT singletonjohn controllingmagneticanisotropyinazerodimensionals1magnetusingisotropiccationsubstitution