Cargando…
Maximum likelihood-based extended Kalman filter for COVID-19 prediction
Prediction of COVID-19 spread plays a significant role in the epidemiology study and government battles against the epidemic. However, the existing studies on COVID-19 prediction are dominated by constant model parameters, unable to reflect the actual situation of COVID-19 spread. This paper present...
Autores principales: | Song, Jialu, Xie, Hujin, Gao, Bingbing, Zhong, Yongmin, Gu, Chengfan, Choi, Kup-Sze |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017556/ https://www.ncbi.nlm.nih.gov/pubmed/33824550 http://dx.doi.org/10.1016/j.chaos.2021.110922 |
Ejemplares similares
-
Extended Kalman filter based on stochastic epidemiological model for COVID-19 modelling
por: Zhu, Xinhe, et al.
Publicado: (2021) -
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter
por: Gao, Bingbing, et al.
Publicado: (2018) -
Random Weighting, Strong Tracking, and Unscented Kalman Filter for Soft Tissue Characterization
por: Shin, Jaehyun, et al.
Publicado: (2018) -
Soft tissue deformation estimation by spatio-temporal Kalman filter finite element method
por: Yarahmadian, Mehran, et al.
Publicado: (2018) -
A Robust Cubature Kalman Filter with Abnormal Observations Identification Using the Mahalanobis Distance Criterion for Vehicular INS/GNSS Integration
por: Gao, Bingbing, et al.
Publicado: (2019)