Cargando…
IPCARF: improving lncRNA-disease association prediction using incremental principal component analysis feature selection and a random forest classifier
BACKGROUND: Identifying lncRNA-disease associations not only helps to better comprehend the underlying mechanisms of various human diseases at the lncRNA level but also speeds up the identification of potential biomarkers for disease diagnoses, treatments, prognoses, and drug response predictions. H...
Autores principales: | Zhu, Rong, Wang, Yong, Liu, Jin-Xing, Dai, Ling-Yun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017839/ https://www.ncbi.nlm.nih.gov/pubmed/33794766 http://dx.doi.org/10.1186/s12859-021-04104-9 |
Ejemplares similares
-
Prediction of plant lncRNA by ensemble machine learning classifiers
por: Simopoulos, Caitlin M. A., et al.
Publicado: (2018) -
A Jackknife and Voting Classifier Approach to Feature Selection and Classification
por: Taylor, Sandra L., et al.
Publicado: (2011) -
Principal component gene set enrichment (PCGSE)
por: Frost, H. Robert, et al.
Publicado: (2015) -
A random forest based computational model for predicting novel lncRNA-disease associations
por: Yao, Dengju, et al.
Publicado: (2020) -
A novel computational model for predicting potential LncRNA-disease associations based on both direct and indirect features of LncRNA-disease pairs
por: Xiao, Yubin, et al.
Publicado: (2020)