Cargando…
Research Screener: a machine learning tool to semi-automate abstract screening for systematic reviews
BACKGROUND: Systematic reviews and meta-analyses provide the highest level of evidence to help inform policy and practice, yet their rigorous nature is associated with significant time and economic demands. The screening of titles and abstracts is the most time consuming part of the review process w...
Autores principales: | Chai, Kevin E. K., Lines, Robin L. J., Gucciardi, Daniel F., Ng, Leo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017894/ https://www.ncbi.nlm.nih.gov/pubmed/33795003 http://dx.doi.org/10.1186/s13643-021-01635-3 |
Ejemplares similares
-
Evaluation of a prototype machine learning tool to semi-automate data extraction for systematic literature reviews
por: Panayi, Antonia, et al.
Publicado: (2023) -
Screening PubMed abstracts: is class imbalance always a challenge to machine learning?
por: Lanera, Corrado, et al.
Publicado: (2019) -
Semi-supervised machine learning for automated species identification by collagen peptide mass fingerprinting
por: Gu, Muxin, et al.
Publicado: (2018) -
Malaria Screener: a smartphone application for automated malaria screening
por: Yu, Hang, et al.
Publicado: (2020) -
Semi-automated quantification of living cells with internalized nanostructures
por: Margineanu, Michael Bogdan, et al.
Publicado: (2016)