Cargando…
Using urban landscape pattern to understand and evaluate infectious disease risk
COVID-19 case numbers in 161 sub-districts of Wuhan were investigated based on landscape epidemiology, and their landscape metrics were calculated based on land use/land cover (LULC). Initially, a mediation model verified a partially mediated population role in the relationship between landscape pat...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier GmbH.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017915/ https://www.ncbi.nlm.nih.gov/pubmed/33824634 http://dx.doi.org/10.1016/j.ufug.2021.127126 |
_version_ | 1783674142172643328 |
---|---|
author | Ye, Yang Qiu, Hongfei |
author_facet | Ye, Yang Qiu, Hongfei |
author_sort | Ye, Yang |
collection | PubMed |
description | COVID-19 case numbers in 161 sub-districts of Wuhan were investigated based on landscape epidemiology, and their landscape metrics were calculated based on land use/land cover (LULC). Initially, a mediation model verified a partially mediated population role in the relationship between landscape pattern and infection number. Adjusted incidence rate (AIR) and community safety index (CSI), two indicators for infection risk in sub-districts, were 25.82∼63.56 ‱ and 3.00∼15.87 respectively, and central urban sub-districts were at higher infection risk. Geographically weighted regression (GWR) performed better than OLS regression with AICc differences of 7.951∼181.261. The adjusted R(2) in GWR models of class-level index and infection risk were 0.697 to 0.817, while for the landscape-level index they were 0.668 to 0.835. Secondly, 16 key landscape metrics were identified based on GWR, and then a prediction model for infection risk in sub-districts and communities was developed. Using principal component analysis (PCA), development intensity, landscape level, and urban blue-green space were considered to be principal components affecting disease infection risk, explaining 73.1 % of the total variance. Cropland (PLAND and LSI), urban land (NP, LPI, and LSI) and unused land (NP) represent development intensity, greatly affecting infection risk in urban areas. Landscape level CONTAG, DIVISION, SHDI, and SHEI represent mobility and connectivity, having a profound impact on infection risk in both urban and suburban areas. Water (PLAND, NP, LPI, and LSI) and woodland (NP, and LSI) represent urban blue-green spaces, and were particularly important for infection risk in suburban areas. Based on urban landscape pattern, we proposed a framework to understand and evaluate infection risk. These findings provide a basis for risk evaluation and policy-making of urban infectious disease, which is significant for community management and urban planning for infectious disease worldwide. |
format | Online Article Text |
id | pubmed-8017915 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier GmbH. |
record_format | MEDLINE/PubMed |
spelling | pubmed-80179152021-04-02 Using urban landscape pattern to understand and evaluate infectious disease risk Ye, Yang Qiu, Hongfei Urban For Urban Green Article COVID-19 case numbers in 161 sub-districts of Wuhan were investigated based on landscape epidemiology, and their landscape metrics were calculated based on land use/land cover (LULC). Initially, a mediation model verified a partially mediated population role in the relationship between landscape pattern and infection number. Adjusted incidence rate (AIR) and community safety index (CSI), two indicators for infection risk in sub-districts, were 25.82∼63.56 ‱ and 3.00∼15.87 respectively, and central urban sub-districts were at higher infection risk. Geographically weighted regression (GWR) performed better than OLS regression with AICc differences of 7.951∼181.261. The adjusted R(2) in GWR models of class-level index and infection risk were 0.697 to 0.817, while for the landscape-level index they were 0.668 to 0.835. Secondly, 16 key landscape metrics were identified based on GWR, and then a prediction model for infection risk in sub-districts and communities was developed. Using principal component analysis (PCA), development intensity, landscape level, and urban blue-green space were considered to be principal components affecting disease infection risk, explaining 73.1 % of the total variance. Cropland (PLAND and LSI), urban land (NP, LPI, and LSI) and unused land (NP) represent development intensity, greatly affecting infection risk in urban areas. Landscape level CONTAG, DIVISION, SHDI, and SHEI represent mobility and connectivity, having a profound impact on infection risk in both urban and suburban areas. Water (PLAND, NP, LPI, and LSI) and woodland (NP, and LSI) represent urban blue-green spaces, and were particularly important for infection risk in suburban areas. Based on urban landscape pattern, we proposed a framework to understand and evaluate infection risk. These findings provide a basis for risk evaluation and policy-making of urban infectious disease, which is significant for community management and urban planning for infectious disease worldwide. Elsevier GmbH. 2021-07 2021-04-02 /pmc/articles/PMC8017915/ /pubmed/33824634 http://dx.doi.org/10.1016/j.ufug.2021.127126 Text en © 2021 Elsevier GmbH. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Ye, Yang Qiu, Hongfei Using urban landscape pattern to understand and evaluate infectious disease risk |
title | Using urban landscape pattern to understand and evaluate infectious disease risk |
title_full | Using urban landscape pattern to understand and evaluate infectious disease risk |
title_fullStr | Using urban landscape pattern to understand and evaluate infectious disease risk |
title_full_unstemmed | Using urban landscape pattern to understand and evaluate infectious disease risk |
title_short | Using urban landscape pattern to understand and evaluate infectious disease risk |
title_sort | using urban landscape pattern to understand and evaluate infectious disease risk |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017915/ https://www.ncbi.nlm.nih.gov/pubmed/33824634 http://dx.doi.org/10.1016/j.ufug.2021.127126 |
work_keys_str_mv | AT yeyang usingurbanlandscapepatterntounderstandandevaluateinfectiousdiseaserisk AT qiuhongfei usingurbanlandscapepatterntounderstandandevaluateinfectiousdiseaserisk |