Cargando…
Herbivory and warming interact in opposing patterns of covariation between arctic shrub species at large and local scales
A major challenge in predicting species’ distributional responses to climate change involves resolving interactions between abiotic and biotic factors in structuring ecological communities. This challenge reflects the classical conceptualization of species’ regional distributions as simultaneously c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017923/ https://www.ncbi.nlm.nih.gov/pubmed/33526672 http://dx.doi.org/10.1073/pnas.2015158118 |
_version_ | 1783674143575638016 |
---|---|
author | Post, Eric Cahoon, Sean M. P. Kerby, Jeffrey T. Pedersen, Christian Sullivan, Patrick F. |
author_facet | Post, Eric Cahoon, Sean M. P. Kerby, Jeffrey T. Pedersen, Christian Sullivan, Patrick F. |
author_sort | Post, Eric |
collection | PubMed |
description | A major challenge in predicting species’ distributional responses to climate change involves resolving interactions between abiotic and biotic factors in structuring ecological communities. This challenge reflects the classical conceptualization of species’ regional distributions as simultaneously constrained by climatic conditions, while by necessity emerging from local biotic interactions. A ubiquitous pattern in nature illustrates this dichotomy: potentially competing species covary positively at large scales but negatively at local scales. Recent theory poses a resolution to this conundrum by predicting roles of both abiotic and biotic factors in covariation of species at both scales, but empirical tests have lagged such developments. We conducted a 15-y warming and herbivore-exclusion experiment to investigate drivers of opposing patterns of covariation between two codominant arctic shrub species at large and local scales. Climatic conditions and biotic exploitation mediated both positive covariation between these species at the landscape scale and negative covariation between them locally. Furthermore, covariation between the two species conferred resilience in ecosystem carbon uptake. This study thus lends empirical support to developing theoretical solutions to a long-standing ecological puzzle, while highlighting its relevance to understanding community compositional responses to climate change. |
format | Online Article Text |
id | pubmed-8017923 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-80179232021-04-12 Herbivory and warming interact in opposing patterns of covariation between arctic shrub species at large and local scales Post, Eric Cahoon, Sean M. P. Kerby, Jeffrey T. Pedersen, Christian Sullivan, Patrick F. Proc Natl Acad Sci U S A Biological Sciences A major challenge in predicting species’ distributional responses to climate change involves resolving interactions between abiotic and biotic factors in structuring ecological communities. This challenge reflects the classical conceptualization of species’ regional distributions as simultaneously constrained by climatic conditions, while by necessity emerging from local biotic interactions. A ubiquitous pattern in nature illustrates this dichotomy: potentially competing species covary positively at large scales but negatively at local scales. Recent theory poses a resolution to this conundrum by predicting roles of both abiotic and biotic factors in covariation of species at both scales, but empirical tests have lagged such developments. We conducted a 15-y warming and herbivore-exclusion experiment to investigate drivers of opposing patterns of covariation between two codominant arctic shrub species at large and local scales. Climatic conditions and biotic exploitation mediated both positive covariation between these species at the landscape scale and negative covariation between them locally. Furthermore, covariation between the two species conferred resilience in ecosystem carbon uptake. This study thus lends empirical support to developing theoretical solutions to a long-standing ecological puzzle, while highlighting its relevance to understanding community compositional responses to climate change. National Academy of Sciences 2021-02-09 2021-02-01 /pmc/articles/PMC8017923/ /pubmed/33526672 http://dx.doi.org/10.1073/pnas.2015158118 Text en Copyright © 2021 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Post, Eric Cahoon, Sean M. P. Kerby, Jeffrey T. Pedersen, Christian Sullivan, Patrick F. Herbivory and warming interact in opposing patterns of covariation between arctic shrub species at large and local scales |
title | Herbivory and warming interact in opposing patterns of covariation between arctic shrub species at large and local scales |
title_full | Herbivory and warming interact in opposing patterns of covariation between arctic shrub species at large and local scales |
title_fullStr | Herbivory and warming interact in opposing patterns of covariation between arctic shrub species at large and local scales |
title_full_unstemmed | Herbivory and warming interact in opposing patterns of covariation between arctic shrub species at large and local scales |
title_short | Herbivory and warming interact in opposing patterns of covariation between arctic shrub species at large and local scales |
title_sort | herbivory and warming interact in opposing patterns of covariation between arctic shrub species at large and local scales |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017923/ https://www.ncbi.nlm.nih.gov/pubmed/33526672 http://dx.doi.org/10.1073/pnas.2015158118 |
work_keys_str_mv | AT posteric herbivoryandwarminginteractinopposingpatternsofcovariationbetweenarcticshrubspeciesatlargeandlocalscales AT cahoonseanmp herbivoryandwarminginteractinopposingpatternsofcovariationbetweenarcticshrubspeciesatlargeandlocalscales AT kerbyjeffreyt herbivoryandwarminginteractinopposingpatternsofcovariationbetweenarcticshrubspeciesatlargeandlocalscales AT pedersenchristian herbivoryandwarminginteractinopposingpatternsofcovariationbetweenarcticshrubspeciesatlargeandlocalscales AT sullivanpatrickf herbivoryandwarminginteractinopposingpatternsofcovariationbetweenarcticshrubspeciesatlargeandlocalscales |