Cargando…
Machine learning-accelerated quantum mechanics-based atomistic simulations for industrial applications
Atomistic simulations have become an invaluable tool for industrial applications ranging from the optimization of protein-ligand interactions for drug discovery to the design of new materials for energy applications. Here we review recent advances in the use of machine learning (ML) methods for acce...
Autores principales: | Morawietz, Tobias, Artrith, Nongnuch |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8018928/ https://www.ncbi.nlm.nih.gov/pubmed/33034008 http://dx.doi.org/10.1007/s10822-020-00346-6 |
Ejemplares similares
-
Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures
por: Garrido Torres, Jose Antonio, et al.
Publicado: (2021) -
Reaction prediction via atomistic simulation: from quantum mechanics to machine learning
por: Kang, Pei-Lin, et al.
Publicado: (2020) -
Superelasticity of Carbon Nanocoils from Atomistic Quantum Simulations
por: Liu, Li Zhao, et al.
Publicado: (2010) -
PiNNwall: Heterogeneous Electrode Models from Integrating
Machine Learning and Atomistic Simulation
por: Dufils, Thomas, et al.
Publicado: (2023) -
Structural rigidity accelerates quantum decoherence and extends carrier lifetime in porphyrin nanoballs: a time domain atomistic simulation
por: Sarkar, Ritabrata, et al.
Publicado: (2020)