Cargando…
Deep generative models in DataSHIELD
BACKGROUND: The best way to calculate statistics from medical data is to use the data of individual patients. In some settings, this data is difficult to obtain due to privacy restrictions. In Germany, for example, it is not possible to pool routine data from different hospitals for research purpose...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019187/ https://www.ncbi.nlm.nih.gov/pubmed/33812380 http://dx.doi.org/10.1186/s12874-021-01237-6 |
_version_ | 1783674329490259968 |
---|---|
author | Lenz, Stefan Hess, Moritz Binder, Harald |
author_facet | Lenz, Stefan Hess, Moritz Binder, Harald |
author_sort | Lenz, Stefan |
collection | PubMed |
description | BACKGROUND: The best way to calculate statistics from medical data is to use the data of individual patients. In some settings, this data is difficult to obtain due to privacy restrictions. In Germany, for example, it is not possible to pool routine data from different hospitals for research purposes without the consent of the patients. METHODS: The DataSHIELD software provides an infrastructure and a set of statistical methods for joint, privacy-preserving analyses of distributed data. The contained algorithms are reformulated to work with aggregated data from the participating sites instead of the individual data. If a desired algorithm is not implemented in DataSHIELD or cannot be reformulated in such a way, using artificial data is an alternative. Generating artificial data is possible using so-called generative models, which are able to capture the distribution of given data. Here, we employ deep Boltzmann machines (DBMs) as generative models. For the implementation, we use the package “BoltzmannMachines” from the Julia programming language and wrap it for use with DataSHIELD, which is based on R. RESULTS: We present a methodology together with a software implementation that builds on DataSHIELD to create artificial data that preserve complex patterns from distributed individual patient data. Such data sets of artificial patients, which are not linked to real patients, can then be used for joint analyses. As an exemplary application, we conduct a distributed analysis with DBMs on a synthetic data set, which simulates genetic variant data. Patterns from the original data can be recovered in the artificial data using hierarchical clustering of the virtual patients, demonstrating the feasibility of the approach. Additionally, we compare DBMs, variational autoencoders, generative adversarial networks, and multivariate imputation as generative approaches by assessing the utility and disclosure of synthetic data generated from real genetic variant data in a distributed setting with data of a small sample size. CONCLUSIONS: Our implementation adds to DataSHIELD the ability to generate artificial data that can be used for various analyses, e.g., for pattern recognition with deep learning. This also demonstrates more generally how DataSHIELD can be flexibly extended with advanced algorithms from languages other than R. |
format | Online Article Text |
id | pubmed-8019187 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-80191872021-04-05 Deep generative models in DataSHIELD Lenz, Stefan Hess, Moritz Binder, Harald BMC Med Res Methodol Technical Advance BACKGROUND: The best way to calculate statistics from medical data is to use the data of individual patients. In some settings, this data is difficult to obtain due to privacy restrictions. In Germany, for example, it is not possible to pool routine data from different hospitals for research purposes without the consent of the patients. METHODS: The DataSHIELD software provides an infrastructure and a set of statistical methods for joint, privacy-preserving analyses of distributed data. The contained algorithms are reformulated to work with aggregated data from the participating sites instead of the individual data. If a desired algorithm is not implemented in DataSHIELD or cannot be reformulated in such a way, using artificial data is an alternative. Generating artificial data is possible using so-called generative models, which are able to capture the distribution of given data. Here, we employ deep Boltzmann machines (DBMs) as generative models. For the implementation, we use the package “BoltzmannMachines” from the Julia programming language and wrap it for use with DataSHIELD, which is based on R. RESULTS: We present a methodology together with a software implementation that builds on DataSHIELD to create artificial data that preserve complex patterns from distributed individual patient data. Such data sets of artificial patients, which are not linked to real patients, can then be used for joint analyses. As an exemplary application, we conduct a distributed analysis with DBMs on a synthetic data set, which simulates genetic variant data. Patterns from the original data can be recovered in the artificial data using hierarchical clustering of the virtual patients, demonstrating the feasibility of the approach. Additionally, we compare DBMs, variational autoencoders, generative adversarial networks, and multivariate imputation as generative approaches by assessing the utility and disclosure of synthetic data generated from real genetic variant data in a distributed setting with data of a small sample size. CONCLUSIONS: Our implementation adds to DataSHIELD the ability to generate artificial data that can be used for various analyses, e.g., for pattern recognition with deep learning. This also demonstrates more generally how DataSHIELD can be flexibly extended with advanced algorithms from languages other than R. BioMed Central 2021-04-03 /pmc/articles/PMC8019187/ /pubmed/33812380 http://dx.doi.org/10.1186/s12874-021-01237-6 Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Technical Advance Lenz, Stefan Hess, Moritz Binder, Harald Deep generative models in DataSHIELD |
title | Deep generative models in DataSHIELD |
title_full | Deep generative models in DataSHIELD |
title_fullStr | Deep generative models in DataSHIELD |
title_full_unstemmed | Deep generative models in DataSHIELD |
title_short | Deep generative models in DataSHIELD |
title_sort | deep generative models in datashield |
topic | Technical Advance |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019187/ https://www.ncbi.nlm.nih.gov/pubmed/33812380 http://dx.doi.org/10.1186/s12874-021-01237-6 |
work_keys_str_mv | AT lenzstefan deepgenerativemodelsindatashield AT hessmoritz deepgenerativemodelsindatashield AT binderharald deepgenerativemodelsindatashield |