Cargando…
Deep generative models in DataSHIELD
BACKGROUND: The best way to calculate statistics from medical data is to use the data of individual patients. In some settings, this data is difficult to obtain due to privacy restrictions. In Germany, for example, it is not possible to pool routine data from different hospitals for research purpose...
Autores principales: | Lenz, Stefan, Hess, Moritz, Binder, Harald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019187/ https://www.ncbi.nlm.nih.gov/pubmed/33812380 http://dx.doi.org/10.1186/s12874-021-01237-6 |
Ejemplares similares
-
Privacy protected text analysis in DataSHIELD
por: Wilson, Rebecca, et al.
Publicado: (2017) -
Privacy protected graphical functionality in DataSHIELD
por: Avraam, Demetris, et al.
Publicado: (2017) -
DataSHIELD: taking the analysis to the data, not the data to the analysis
por: Gaye, Amadou, et al.
Publicado: (2014) -
dsSynthetic: synthetic data generation for the DataSHIELD federated analysis system
por: Banerjee, Soumya, et al.
Publicado: (2022) -
dsSurvival: Privacy preserving survival models for federated individual patient meta-analysis in DataSHIELD
por: Banerjee, Soumya, et al.
Publicado: (2022)