Cargando…
HIF‐1α downregulation of miR‐433‐3p in adipocyte‐derived exosomes contributes to NPC progression via targeting SCD1
Resident adipocytes under a hypoxic tumor microenvironment exert an increasingly important role in cell growth, proliferation, and invasion in cancers. However, the communication between adipocytes and cancer cells during nasopharyngeal carcinoma (NPC) progression is poorly understood. Here, we demo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019221/ https://www.ncbi.nlm.nih.gov/pubmed/33511729 http://dx.doi.org/10.1111/cas.14829 |
Sumario: | Resident adipocytes under a hypoxic tumor microenvironment exert an increasingly important role in cell growth, proliferation, and invasion in cancers. However, the communication between adipocytes and cancer cells during nasopharyngeal carcinoma (NPC) progression is poorly understood. Here, we demonstrate that hypoxic adipocyte‐derived exosomes are key information carriers that transfer low expression of miR‐433‐3p into NPC cells. In addition, luciferase reporter assays detected that hypoxia inducible factor‐1α (HIF‐1α) induced miR‐433‐3p transcription through five binding sites at its promoter region. Concordantly, the low expression of miR‐433‐3p promoted proliferation, migration, and lipid accumulation in NPC cells via targeting stearoyl‐CoA desaturase 1 (SCD1) are suggested by functional studies. Consistent with these findings, in tumor‐bearing mice, NPC cells with low HIF‐1α expression, high miR‐433‐3p expression, and low SCD1 expression were equally endowed with remarkably reduced potential of tumorigenesis. Collectively, our study highlights the critical role of the HIF‐1α‐miR‐433‐3p‐SCD1 axis in NPC progression, which can serve as a mechanism‐based potential therapeutic approach. |
---|