Cargando…
The classification of EEG-based winking signals: a transfer learning and random forest pipeline
Brain Computer-Interface (BCI) technology plays a considerable role in the control of rehabilitation or peripheral devices for stroke patients. This is particularly due to their inability to control such devices from their inherent physical limitations after such an attack. More often than not, the...
Autores principales: | Mahendra Kumar, Jothi Letchumy, Rashid, Mamunur, Muazu Musa, Rabiu, Mohd Razman, Mohd Azraai, Sulaiman, Norizam, Jailani, Rozita, P.P. Abdul Majeed, Anwar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019310/ https://www.ncbi.nlm.nih.gov/pubmed/33850667 http://dx.doi.org/10.7717/peerj.11182 |
Ejemplares similares
-
Diagnosis of hearing deficiency using EEG based AEP signals: CWT and improved-VGG16 pipeline
por: Islam, Md Nahidul, et al.
Publicado: (2021) -
The classification of motor imagery response: an accuracy enhancement through the ensemble of random subspace k-NN
por: Rashid, Mamunur, et al.
Publicado: (2021) -
The classification of skateboarding tricks via transfer learning pipelines
por: Abdullah, Muhammad Amirul, et al.
Publicado: (2021) -
A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework
por: Bari, Bifta Sama, et al.
Publicado: (2021) -
Current Status, Challenges, and Possible Solutions of EEG-Based Brain-Computer Interface: A Comprehensive Review
por: Rashid, Mamunur, et al.
Publicado: (2020)