Cargando…
Clinical Influencing Factors of Acute Myocardial Infarction Based on Improved Machine Learning
At present, there is no method to predict or monitor patients with AMI, and there is no specific treatment method. In order to improve the analysis of clinical influencing factors of acute myocardial infarction, based on the machine learning algorithm, this paper uses the K-means algorithm to carry...
Autores principales: | Du, Hongwei, Feng, Linxing, Xu, Yan, Zhan, Enbo, Xu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019385/ https://www.ncbi.nlm.nih.gov/pubmed/33854744 http://dx.doi.org/10.1155/2021/5569039 |
Ejemplares similares
-
Retracted: Clinical Influencing Factors of Acute Myocardial Infarction Based on Improved Machine Learning
por: Healthcare Engineering, Journal of
Publicado: (2023) -
Machine Learning to Predict the Likelihood of Acute Myocardial Infarction
por: Than, Martin P., et al.
Publicado: (2019) -
Machine learning prediction of mortality in Acute Myocardial Infarction
por: Oliveira, Mariana, et al.
Publicado: (2023) -
Prognostic Value of Machine Learning in Patients with Acute Myocardial Infarction
por: Xiao, Changhu, et al.
Publicado: (2022) -
Machine Learning to Predict Contrast-Induced Acute Kidney Injury in Patients With Acute Myocardial Infarction
por: Sun, Ling, et al.
Publicado: (2020)