Cargando…
Type I error control for cluster randomized trials under varying small sample structures
BACKGROUND: Linear mixed models (LMM) are a common approach to analyzing data from cluster randomized trials (CRTs). Inference on parameters can be performed via Wald tests or likelihood ratio tests (LRT), but both approaches may give incorrect Type I error rates in common finite sample settings. Th...
Autores principales: | Nugent, Joshua R., Kleinman, Ken P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019504/ https://www.ncbi.nlm.nih.gov/pubmed/33812367 http://dx.doi.org/10.1186/s12874-021-01236-7 |
Ejemplares similares
-
Calculating Power by Bootstrap, with an Application to Cluster-Randomized Trials
por: Kleinman, Ken, et al.
Publicado: (2017) -
The Effect of Cluster Size Variability on Statistical Power in Cluster-Randomized Trials
por: Lauer, Stephen A., et al.
Publicado: (2015) -
Matching in cluster randomized trials using the Goldilocks Approach
por: Sturdevant, S. Gwynn, et al.
Publicado: (2021) -
Increased risk of type I errors in cluster randomised trials with small or medium numbers of clusters: a review, reanalysis, and simulation study
por: Kahan, Brennan C., et al.
Publicado: (2016) -
Data with Hierarchical Structure: Impact of Intraclass Correlation and Sample Size on Type-I Error
por: Musca, Serban C., et al.
Publicado: (2011)