Cargando…

Understanding photosynthesis in a spatial–temporal multiscale: The need for a systemic view

In October 2020, at the peak of the COVID-19 pandemic, a group of young Brazilian photosynthesis researchers organized the 1st Brazilian Symposium on Photosynthesis. The event was free and online, with the presence of important guest speakers from all over the world, who discussed their recent works...

Descripción completa

Detalles Bibliográficos
Autores principales: Neto, Milton C. Lima, Carvalho, Fabricio E. L., Souza, Gustavo M., Silveira, Joaquim A. G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019523/
https://www.ncbi.nlm.nih.gov/pubmed/33842196
http://dx.doi.org/10.1007/s40626-021-00199-w
_version_ 1783674389225537536
author Neto, Milton C. Lima
Carvalho, Fabricio E. L.
Souza, Gustavo M.
Silveira, Joaquim A. G.
author_facet Neto, Milton C. Lima
Carvalho, Fabricio E. L.
Souza, Gustavo M.
Silveira, Joaquim A. G.
author_sort Neto, Milton C. Lima
collection PubMed
description In October 2020, at the peak of the COVID-19 pandemic, a group of young Brazilian photosynthesis researchers organized the 1st Brazilian Symposium on Photosynthesis. The event was free and online, with the presence of important guest speakers from all over the world, who discussed their recent works on topics related to the future and perspectives of photosynthesis research. Summarizing the expectations of this symposium we highlighted the importance of adopting a systemic perspective for a better understanding of photosynthesis as a complex and dynamic process. Plants are modular and self-regulating presenting metabolic redundancy and functional degeneration. Among the various biological processes, photosynthesis plays a crucial role in promoting the direct conversion of light energy into carbon skeletons for support growth and productivity. In the past decades, significant advances have been made in photosynthesis at the biophysical, biochemical, and molecular levels. However, this myriad of knowledge has been insufficient to answer crucial questions, such as: how can we understand and eventually increase photosynthetic efficiency and yield in crops subjected to adverse environment related to climate-changing? We believe that a crucial limitation to the whole comprehension of photosynthesis is associated with a vastly widespread classic reductionist view. Moreover, this perspective is commonly accompanied by non-integrative, simplistic, and descriptive approaches to investigate a complex and dynamic process as photosynthesis. Herein, we propose the use of new approaches, mostly based on the Systems Theory, which certainly comes closer to the real world, such as the complex systems that the plants represent.
format Online
Article
Text
id pubmed-8019523
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-80195232021-04-06 Understanding photosynthesis in a spatial–temporal multiscale: The need for a systemic view Neto, Milton C. Lima Carvalho, Fabricio E. L. Souza, Gustavo M. Silveira, Joaquim A. G. Theor Exp Plant Physiol Article In October 2020, at the peak of the COVID-19 pandemic, a group of young Brazilian photosynthesis researchers organized the 1st Brazilian Symposium on Photosynthesis. The event was free and online, with the presence of important guest speakers from all over the world, who discussed their recent works on topics related to the future and perspectives of photosynthesis research. Summarizing the expectations of this symposium we highlighted the importance of adopting a systemic perspective for a better understanding of photosynthesis as a complex and dynamic process. Plants are modular and self-regulating presenting metabolic redundancy and functional degeneration. Among the various biological processes, photosynthesis plays a crucial role in promoting the direct conversion of light energy into carbon skeletons for support growth and productivity. In the past decades, significant advances have been made in photosynthesis at the biophysical, biochemical, and molecular levels. However, this myriad of knowledge has been insufficient to answer crucial questions, such as: how can we understand and eventually increase photosynthetic efficiency and yield in crops subjected to adverse environment related to climate-changing? We believe that a crucial limitation to the whole comprehension of photosynthesis is associated with a vastly widespread classic reductionist view. Moreover, this perspective is commonly accompanied by non-integrative, simplistic, and descriptive approaches to investigate a complex and dynamic process as photosynthesis. Herein, we propose the use of new approaches, mostly based on the Systems Theory, which certainly comes closer to the real world, such as the complex systems that the plants represent. Springer International Publishing 2021-04-04 2021 /pmc/articles/PMC8019523/ /pubmed/33842196 http://dx.doi.org/10.1007/s40626-021-00199-w Text en © Brazilian Society of Plant Physiology 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Article
Neto, Milton C. Lima
Carvalho, Fabricio E. L.
Souza, Gustavo M.
Silveira, Joaquim A. G.
Understanding photosynthesis in a spatial–temporal multiscale: The need for a systemic view
title Understanding photosynthesis in a spatial–temporal multiscale: The need for a systemic view
title_full Understanding photosynthesis in a spatial–temporal multiscale: The need for a systemic view
title_fullStr Understanding photosynthesis in a spatial–temporal multiscale: The need for a systemic view
title_full_unstemmed Understanding photosynthesis in a spatial–temporal multiscale: The need for a systemic view
title_short Understanding photosynthesis in a spatial–temporal multiscale: The need for a systemic view
title_sort understanding photosynthesis in a spatial–temporal multiscale: the need for a systemic view
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019523/
https://www.ncbi.nlm.nih.gov/pubmed/33842196
http://dx.doi.org/10.1007/s40626-021-00199-w
work_keys_str_mv AT netomiltonclima understandingphotosynthesisinaspatialtemporalmultiscaletheneedforasystemicview
AT carvalhofabricioel understandingphotosynthesisinaspatialtemporalmultiscaletheneedforasystemicview
AT souzagustavom understandingphotosynthesisinaspatialtemporalmultiscaletheneedforasystemicview
AT silveirajoaquimag understandingphotosynthesisinaspatialtemporalmultiscaletheneedforasystemicview