Cargando…

The impact of maturity on the ability of Eimeria acervulina and Eimeria meleagrimitis oocysts to sporulate

The sporulation of oocysts of Eimeria that infect poultry is known to be under the influence of environmental conditions, including temperature, oxygen supply, and moisture. However, even when these conditions are optimal, the level of sporulation can remain low. The effect of oocyst maturity on the...

Descripción completa

Detalles Bibliográficos
Autores principales: Répérant, Jean-Michel, Thomas-Hénaff, Martine, Benoit, Chantal, Le Bihannic, Pierre, Eterradossi, Nicolas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: EDP Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019568/
https://www.ncbi.nlm.nih.gov/pubmed/33812464
http://dx.doi.org/10.1051/parasite/2021031
Descripción
Sumario:The sporulation of oocysts of Eimeria that infect poultry is known to be under the influence of environmental conditions, including temperature, oxygen supply, and moisture. However, even when these conditions are optimal, the level of sporulation can remain low. The effect of oocyst maturity on their ability to sporulate was investigated for two species of Eimeria: E. acervulina of chickens, and E. meleagrimitis of turkeys. After oral infection of birds, oocysts were collected at their production site in the intestine at different times around the prepatent period. The percentage of sporulation was determined by observation of 100 oocysts for each sample. With E. acervulina, it was observed that sporulation depended on the time of collection of the oocysts in the intestine, and that it increased with aging oocysts (from 5% to 40% globally in 8 h). With E. meleagrimitis, sporulation remained low with oocysts collected in the duodenum (below 20%), but oocysts collected in the midgut and in the lower intestine sporulated more efficiently (around 80%) than oocysts collected in the duodenum at the same time. One explanation for these results is the assumption that oocysts may be produced before fertilization, and that microgametes have not yet fertilized the newly produced oocysts. As time goes on, more oocysts would be fertilized, locally in the duodenum for E. acervulina, and descending along the gut for E. meleagrimitis. This hypothesis needs to be investigated further, but it could lead to new approaches to control these parasites by targeting the microgametes.