Cargando…
A review of machine learning experiments in equity investment decision-making: why most published research findings do not live up to their promise in real life
The numerical nature of financial markets makes market forecasting and portfolio construction a good use case for machine learning (ML), a branch of artificial intelligence (AI). Over the past two decades, a number of academics worldwide (mostly from the field of computer science) produced a sizeabl...
Autores principales: | Buczynski, Wojtek, Cuzzolin, Fabio, Sahakian, Barbara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8019690/ https://www.ncbi.nlm.nih.gov/pubmed/33842690 http://dx.doi.org/10.1007/s41060-021-00245-5 |
Ejemplares similares
-
Why Most Published Research Findings Are False
por: Ioannidis, John P. A.
Publicado: (2005) -
Correction: Why Most Published Research Findings Are False
por: Ioannidis, John P. A.
Publicado: (2022) -
Editorial: Theory of Mind in Humans and in Machines
por: Langley, Christelle, et al.
Publicado: (2022) -
Why Most Published Research Findings Are False: Problems in the Analysis
por: Goodman, Steven, et al.
Publicado: (2007) -
For which clinical rules do doctors want decision support, and why? A survey of Dutch general practitioners
por: Medlock, Stephanie, et al.
Publicado: (2017)